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• Activities of 354 MaE chemicals were pre-
dicted in ToxCast neurotoxicity assays.

• Neurotransmitter release, reception and
reuptake were main mechanisms of ac-
tion.

• We propose a potential neurotoxicity AOP
for MaE.

• We identified nine neurotoxic compounds
from cyanobacteria exudates.
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Release of toxic cyanobacterial secondary metabolites threatens biosecurity, foodwebs and public health. Microcystis
aeruginosa (Ma), the dominant species in global freshwater cyanobacterial blooms, produces exudates (MaE) that
cause adverse outcomes including nerve damage. Previously, we identified > 300 chemicals in MaE. It is critical to in-
vestigate neurotoxicity mechanisms of active substances among this suite of Ma compounds. Here, we screened 103
neurotoxicity assays from the ToxCast database to reveal targets of action of MaE using machine learning. We then
built a potential Adverse Outcome Pathway (AOP) to identify neurotoxicity mechanisms of MaE as well as key targets.
Finally,we selected potential neurotoxinsmatchedwith those targets usingmolecular docking.We found 38 targets that
were inhibited and eight targets that were activated, collectively mainly related to neurotransmission (i.e. cholinergic,
dopaminergic and serotonergic neurotransmitter systems). The potential AOP of MaE neurotoxicity could be caused by
blocking calcium voltage-gated channel (CACNA1A), because of antagonizing neurotransmitter receptors, or because
of inhibiting solute carrier transporters. We identified nine neurotoxic MaE compounds with high affinity to those
targets, including LysoPC(16:0), 2-acetyl-1-alkyl-sn-glycero-3-phosphocholine, egonol glucoside, polyoxyethylene
(600) monoricinoleate, and phytosphingosine. Our study enhances understanding of neurotoxicity mechanisms and
identifies neurotoxins in cyanobacterial bloom exudates, whichmay help identify priority compounds for cyanobacteria
management.
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1. Introduction

Blooming cyanobacteria pose a major risk to aquatic ecosystems and
global public health (Gobler, 2020). The frequency and severity of
cyanobacteria blooms (cHABs) are increasing globally and may be exacer-
bated by climate change (Paerl and Paul, 2012). A total of 9503 harmful
algae events have been recorded worldwide as of December 2019
(Hallegraeff et al., 2021). cHABs are associated with adverse effects on
other algae, plants, wild animals, livestock and humans (Lévesque et al.,
2014; Buratti et al., 2017). For example, during the summer of
2018–2019, millions of fish in a river in south-eastern Australia were killed
by cHABs (Ellis et al., 2022), and nearly 400 elephants in Botswana died
during 2020 after drinking water containing blooming cyanobacteria
(Veerman et al., 2022). Many of the 126 patients poisoned by cHABs in
Caruaru, Brazil, in 1996 exhibited neurological symptoms such dizziness
and vertigo (Jochimsen et al., 1998). Impacts on both wildlife and humans
result from the release of a diverse mixture of potentially toxic metabolites
from senescent and lysing cyanobacteria cells (Pípal et al., 2020; Banerjee
et al., 2021), though toxicity of many of these metabolites remains un-
known (Janssen, 2019).

Neurotoxicity is one of the most concerning hazards of cyanobacterial
secondary metabolites. Some metabolites possess demonstrated neurotox-
icity, including microcystins (MCs), aetokthonotoxin, anatoxin-a (ANTX-
a), cylindrotoxin, and saxitoxin. MC-LR exposure caused increased brain
phosphatase activity and reactive oxygen species (ROS) levels (Wang
et al., 2010), decreased dopamine concentration (Wu et al., 2016), dam-
aged the blood-brain barrier (Wang et al., 2019), and impaired cognitive
and spatial learning and memory (Li et al., 2014) in a variety of species.
Exposure to ANTX-a caused changes in protein expression in zebrafish
brain (Carneiro et al., 2015). Cylindrotoxin increased lipid peroxidation
levels and enlarged neuronal nuclei in and DNA damage to brain tissue
(Guzmán-Guillén et al., 2015; Rabelo et al., 2021). Saxitoxin decreased
cell viability, increased glutathione peroxidase levels, and severely
damaged neuronal-cell DNA (Silva et al., 2014). Aetokthonotoxin caused
vacuolar myelinopathy and associated eagle kills (Breinlinger et al.,
2021). It is important to note that many cHAB toxicity studies focused
on single, well-identified chemicals, though metabolites released by
cyanobacteria are comprised of varying mixtures of these compounds
(Bláhová et al., 2009; Janssen, 2019; Pawlik-Skowrońska et al., 2019).
Thus, existing tests exploring consequences of exposure to individual
chemicals, while valuable, may not be representative of the overall impact
of chemical mixtures in nature (Ger et al., 2014). It is quite possible that
cHAB metabolite mixtures have higher toxicity relative to single ones
(Pawlik-Skowrońska et al., 2019; Hsieh et al., 2021), thus information on
the combined effect of mixtures is important for ecotoxicological assess-
ments (Qian et al., 2018). At the same time, due to the complexity of the
composition of cyanobacterial metabolites, it is also important to identify
priority toxins within these mixtures that are worthy of close monitoring
in nature (Bláhová et al., 2009).

Microcystis aeruginosa, themost dominant bloom-forming cyanobacterium
globally, produces exudates (MaE) that may exert strong inhibitory effects on
co-occurring species (Jiang et al., 2019), especially if exudates were obtained
from the exponential-growth phrase (Xu et al., 2016). MaE exposure is asso-
ciatedwith adverse outcomes on aquatic biota including inhibition of growth
in green algae, diatoms, and bacteria (Wang et al., 2017), estrogenic effects in
zooplankton (Xu et al., 2019), and malformations in fish embryos (Zi et al.,
2018). In addition, MaE can cause neurological damage and reduced fish ac-
tivity (Qian et al., 2018; Cai et al., 2022). MaE also causes reduced levels of
acetylcholinesterase (ACHE) and dopamine and expression of the acetylcho-
line receptor, affecting cholinergic and dopaminergic neurotransmitter
systems (Qian et al., 2018). However, the identity of other potential neuro-
toxins and other mechanisms of neurotoxicity remain unknown. Thus, it is
critical to increase understanding of neurotoxic chemicals in MaE as well as
their effects.

We have identified 12 classes and > 300 chemicals in an MaE mixture
obtained from exponential-growth cultures of M. aeruginosa (FACHB 905
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strain) (Zhou et al., under review). The complexity of chemicals produced
makes it difficult to identify major toxins and to determine mechanisms
of toxicity. However, the Adverse Outcome Pathway (AOP) is a framework
that assesses toxicity of chemical mixtures, allowing chemical prioritization
and screening (Ankley et al., 2010; LaLone et al., 2017). AOP focuses on the
cellular level and ties to adverse outcome (AO) by identifying themolecular
initiating event (MIE) and linking key events (KEs) (Ankley et al., 2010),
and is widely accepted by regulatory agencies (Angrish et al., 2018). The
AOP framework may be particularly useful toMaE studies, as the neurotox-
icity mechanisms are not well understood.

Machine learning based on the ToxCast database andmolecular docking
is an excellent tool by which neurotoxins can be identified in MaE and for
developing an AOP. Machine learning can predict the effects of unknown
metabolites after training models with known chemicals (Jones et al.,
2021). It can screen large numbers of compounds in a short time and at
low cost. The method is widely used in toxicity prediction, including hepa-
totoxicity of phytochemicals (Liu, 2018), toxicity of plastic additives (Jeong
and Choi, 2020) and neurotoxicity of nanoparticles (Furxhi and Murphy,
2020). The ToxCast database provides a reliable source of training data
for > 9000 environmental chemicals and 12,000 assays (Richard et al.,
2016; Firman et al., 2021). After identification the intended targets of
assays including ACHE, dopamine receptor (DR), cholinergic receptor mus-
carinic 2 (CHRM2), AOP can be built based on the information of targets
(Jeong and Choi, 2020). Therefore, machine learning models and ToxCast
assays can be used to recognize chemical structures correlated with active
hit calls, and to predict if other chemical structures are active and thus
their potential toxicity (Knight et al., 2009; Jeong et al., 2021). In this man-
ner, we can prioritize chemicals and develop AOP, which in turn can feed
into development of science-based regulatory measures (Knight et al.,
2009; Ankley et al., 2010). On the other hand, when given a target protein,
molecular docking can be used to screen active compounds from a ligand
database (Jeong et al., 2021), and adverse outcomes and key events can
be defined according to the interaction between chemicals and targets
(Ankley et al., 2010; Firman et al., 2021). Consequently, these methods
may be highly effective in identifying potential priority neurotoxic com-
pounds in MaE and developing an AOP.

In this study, we addressed potential neurotoxicity mechanisms as-
sociated with MaE mixtures, developed an AOP, and identified potential
neurotoxins using an in silico method. Specifically, we utilized ToxCast
assays that address functioning of the nervous system, followed by ma-
chine learning (supervised gradient-boosting classifier models) based
on the ToxCast assays to predict active chemicals in MaE mixtures. We
then identified targets of action and proposed an AOP to reveal neuro-
toxicity mechanism(s) of MaE. Finally, we validated the active com-
pounds by binding affinity with targets using molecular docking to
screen priority neurotoxins.

2. Materials and methods

2.1. ToxCast assays

We used ToxCast assay summary file (Assay_Summary_190226) to
select intended targets which were expressed in brain or function rele-
vant to the nervous system and verified the corresponding function in
the literature. We identified 72 intended targets (Table S1), which are
mainly involved in neurotransmission and neuroinflammation. We
selected 103 assays (Table S2) and collected the corresponding hit call
data (chemical activity data of assays) from ToxCast database for the
intended targets.

2.2. MaE source

The MaE chemical composition list was obtained from our previous
study (Zhou et al., under review). In total, we identified 354 chemicals in
MaE for which we were able to find structure information (Table S3).
Most of the chemicals are lipids and lipid-like molecules.
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2.3. Machine learning

We considered the hit call results of 103 assays from ToxCast and
8650 corresponding chemicals with active concentration at 10% of
maximal activity. Not all chemicals were available for all assays. Chem-
ical structure was represented by canonical simplified molecular-input
line-entry system (SMILES) strings. In total, 8374 unique SMILES were
obtained from PubChem (https://pubchem.ncbi.nlm.-nih.gov/) and
276 from ChemSpider (http://www.chemspider.com/). This process was
repeated for 354 MaE chemical structures, obtained from PubChem. For
molecular representation, we used RDkit (http://www.rdkit.org) to deter-
mine Morgan fingerprints with a radius of two bonds from each SMILES.
Morgan fingerprints encode chemical structure as binary 2048-bit vectors
through an iterative process of assigning unique identifiers to each atom
to generate identifiers independent of the original atoms (Rogers and
Hahn, 2010). Specifically, 0 and 1 represent the non-existence or existence,
respectively, of specific circular substructures around each atom in a mole-
cule which are predictive of biological activities (Morgan, 1965; Rogers
and Hahn, 2010; Capecchi et al., 2020).

ToxCast assay datasets were unbalanced (Table S2), which potentially
hindered machine learning performance. We conducted adaptive synthetic
sampling (ADASYN), a resampling method for unbalanced data (Branco
et al., 2016). Thenwe trained a supervised gradient boosting classifier to re-
lateMorgan fingerprints to binary ToxCast activity classifications (active or
inactive) for each assay. Gradient boosting classifiers are robust and adapt-
able with unbalanced data (Zarinabad et al., 2016). A single classifier was
trained for each assay by 10-fold cross-validation after removal of MaE
chemicals with known activity in training data. This cross-validation
trained the model with 90% of the ToxCast data per assay, and tested the
classification with the remaining 10% validation data. This process was
repeated for each tenth of the data to ensure all data was trained and vali-
dated. Training data allowed the machine learning models to learn how
chemical structure related to activity. Once a model was trained, validation
data was used to provide a measure of model fit. Modeling and 10-fold
cross-validation were conducted using Sci-kit learn toolkit in Python 3.7
(Pedregosa et al., 2011). The resulting average of the 10 runs was obtained
as the training accuracy of the models (Diamantidis et al., 2000). Classifiers
were optimized by comparing a range of hyperparameters and selecting
the highest average accuracy and F1 values. F1 is the harmonic mean of
sensitivity and precision, which is widely used to evaluate the success of
binary classifiers (Lipton et al., 2014). We calculated other metrics of
model performance, including true positive rate (sensitivity) and true
negative rate (specificity). Final classifiers were applied to predict the
activity of MaE chemicals per assay. MaE was defined as having activity
in assays if the number of active compounds was > 10% (Jeong and
Choi, 2020).
Table 1
Summary of classification ability ofmachine learningmodelswith F1 (≥ 70%), sensitivity
information is provided in Table S2.

Intended target family Number of assays Mean model performanc

Accuracy (SD) (%)

GPCR 28 87.9 (0.08)
DNA binding 17 86.6 (0.07)
Transporter 7 86.4 (0.09)
Cell cycle 6 89.2 (0.09)
Ion channel 6 88.0 (0.08)
Oxidoreductase 5 84.8 (0.09)
Esterase 4 82.5 (0.05)
CYP 3 94.8 (0.03)
Kinase 3 92.4 (0.05)
Ligase 2 92.0 (0.03)
Nuclear receptor 2 92.3 (0.01)
Methyltransferase 1 92.5 (NA)
Miscellaneous protein 1 94.5 (NA)
Protease 1 78.6 (NA)

SD: standard deviation; NA: not available.

3

2.4. Molecular docking

We used Molecular Operation Environment (MOE, version 2020)
(Chemical Computing Group, Ltd., Montreal, Quebec, Canada) software
for molecular docking. We prepared SMILES data of predicted MaE active
chemicals per assay as ligands as single text files. The ligand structure was
prepared using the molecular utility's wash function. The log octanol/
water partition coefficient (log Kow) of active chemicals was calculated in
descriptors utility of Database Viewer.

We downloaded the X-ray crystal structures of receptors from Protein
Database Bank (PDB) (https://www.rcsb.org/), which matched Uniprot
identifications of ToxCast assays, such as the PDB codes 7rb5 for ACHE,
5zkc for CHRM2, 7jqz for DRD1, and 2ydo for ADORA2A (adenosine A2a
receptor) (Table S2). We then used the QuickPrep utility to prepare the re-
ceptors after editing them to removewater molecules (Alharbi et al., 2022).

Prepared ligands were docked into the site of receptors using Triangular
Matcher placement with London dG scoring function, and further refined
using rigid receptor with GBVI/WSA dG scoring function. For each ligand,
30 poses were kept and the one with the best docking score is reported.
The same protocol was validated by re-docking the crystal ligands back to
the protein, and good agreement between the docking poses and crystal struc-
turewas found (Table S2). Priority compoundswere selectedwith binding af-
finity of lower than−6.0 Kcal/mol (Jeong et al., 2021) andmolecularweight
higher than 150 (Dix et al., 2006). We chose the compounds with log Kow

between 1.7 (Kostal et al., 2014) and 5.0 (Pajouhesh and Lenz, 2005) because
of their ability to penetrate the blood-brain barrier and bind to target.

2.5. Data analysis

We calculated mean values and standard errors of model parameters.
We analyzed target gene ontology (GO) biological process and molecular
function using BiocManager in R v4.2.0 (Morgan, 2022). We also analyzed
target Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway in
Cytospace v3.9.1 (Shannon et al., 2003).

3. Results

3.1. Machine learning of ToxCast assays

Across the 103 classifiers, accuracy from cross-validation ranged from
22.5 to 99.4% with an average of 82.6%. F1 values ranged from 29.4 to
99.4%with an average of 82.4% (Table S2). Depending on assay, sensitivity
ranged from 31.2 to 100%, while specificity ranged from 13.3 to 100%.
Owing to unbalanced data, we selected assays with F1≥ 70% and sensitiv-
ity ≥ 20% and specificity ≥ 20% for further steps, resulting in 86 assays
with sufficient accuracy for subsequent steps (Table 1). Retained assays
(≥ 20%), and specificity (≥ 20%)by intended target families. Allmodel performance

e

Sensitivity (SD) (%) Specificity (SD) (%) F1 (SD) (%)

91.0 (0.09) 84.7 (0.06) 88.3 (0.08)
84.3 (0.08) 88.8 (0.07) 86.2 (0.08)
90.6 (0.09) 82.2 (0.10) 87.1 (0.08)
86.3 (0.10) 92.1 (0.08) 88.8 (0.09)
88.7 (0.07) 87.4 (0.11) 88.2 (0.08)
88.0 (0.09) 81.8 (0.12) 85.3 (0.09)
81.8 (0.11) 83.1 (0.06) 82.0 (0.06)
95.7 (0.03) 94.0 (0.05) 94.8 (0.03)
89.0 (0.06) 96.0 (0.01) 91.7 (0.05)
88.1 (0.03) 96.0 (0.01) 91.7 (0.02)
91.2 (0.01) 93.4 (0.02) 92.2 (0.01)
89.5 (NA) 95.0 (NA) 91.9 (NA)
98.1 (NA) 91.1 (NA) 94.6 (NA)
81.3 (NA) 75.8 (NA) 79.2 (NA)

https://pubchem.ncbi.nlm.-nih.gov/
http://www.chemspider.com/
http://www.rdkit.org
https://www.rcsb.org/


Fig. 1. Target counts of the 10 most significant GO enrichment analysis terms of
biological processes (a) and molecular functions (b) domains of Microcystis
aeruginosa exudate action targets. Target count is the number of targets in the
corresponding GO term.
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belonged to 17 intended target families: G protein coupled receptor (GPCR)
(28 assays), DNA binding (17 assays), transporter (seven assays), cell cycle
(six assays), ion channel (six assays), oxidoreductase (five assays), and other
eight intended target families with fewer than five assays each.
Fig. 2. Target actions of M. aeruginosa exudates' KEGG pathways with target ratios. Lar
differential target annotated to the pathway to all proteins annotated to that pathway.
differential protein is in the pathway.
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3.2. Targets of action of MaE

We predicted activity ofMaE chemicals in 86 selected assays (Table S3),
of which 61 assays showed activity and could be grouped into 46 targets
(Table S4). According to top 10 GO pathway enrichment analysis (Fig. 1),
these 46 targets of action in the GO biological process (Fig. 1a) domain
were associated with behavior, regulation of neurotransmitter levels,
organic hydroxy compound transport, monoamine transport, response to
dopamine, GPCR signaling pathway, cellular response to dopamine,
catecholamine transport, and serotonin receptor signaling pathway terms.
These targets in the GOmolecular function were involved in GPCR activity
(21) and includes neurotransmitter receptor activity (14), G protein-
coupled amine receptor activity (12), G protein-coupled serotonin receptor
activity (nine), neuropeptide receptor activity (two), and glutamate recep-
tor activity (two). Other molecular functions were also associated with
serotonin binding, amine binding, catecholamine binding, sodium: chloride
symporter activity, and anion: sodium sympoter activity (Fig. 1b). Results
indicated that MaE mainly affected the process of neurotransmission,
such as disturbing reception and transport.

In addition, 46 targets of action were mainly involved in 15 neuro-
associated KEGG pathways (Fig. 2). The neuroactive ligand-receptor interac-
tion pathway had the most targets (21), followed by the calcium signaling
pathway (12) and the serotonergic synapse (12). These targets were also
involved in dopaminergic and cholinergic synapse. The pathways with the
fewest targets involved were the sphingolipid signaling pathway and
apoptosis and neurotrophin signaling pathway. Therefore, MaE impacted
neurotransmission, particularly for serotonergic, dopaminergic, and cholin-
ergic synapses, and were also involved in the apoptotic pathway.

Among 46 active targets, MaE had high activity in assays targeting the
5-hydroxytryptamine receptor (HTR), solute carrier (SLC), adrenoceptor
(ADR), monoamine oxidase (MAO) and voltage-gated channel, while
assays targeting phosphodiesterase 10A and BCL2 apoptosis regulator
(BCL2) had low activity (Table S4). We found that MaE had higher activity
to neurotransmission targets than to apoptosis targets. Eight targets were
activated by MaE, such as Jun proto-oncogene, AP-1 transcription factor
subunit (JUN), BCL2 associated X, apoptosis regulator (BAX), Sp1 transcrip-
tion factor (SP1), while 38 targets were inhibited, such as calcium voltage-
gated channel subunit alpha1A (CACNA1A), sodium voltage-gated channel
ger points indicate a higher number of targets. Target ratio details the ratio of the
The larger the target radio, the more reliable the significance of the enrichment of
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alpha subunit 1 (SCN1A), DRD1, ACHE, and SLC18A2. These results indi-
cate that MaE mainly inhibited neurotransmission targets.

3.3. Potential AOP of neurotoxicity of MaE

Based on the function of targeted action (Table S2) and literature
reports, we built the potential AOP of neurotoxicity of MaE, which was ini-
tiated with three MIEs (Fig. 3). MIE1 was defined as CACNA1A-blocking,
which reduced synaptic vesicle release (KE1), and led to neurotransmitter
imbalance (KE5) especially decreased overall neurotransmitter amounts.
These events caused neurotransmission impairment (KE6) from the release
process. MIE2 was defined as antagonizing neurotransmitter receptors
(including presynaptic and postsynaptic receptors). Antagonism of presyn-
aptic receptors disturbed the feedback mechanism for neurotransmitter
synthesis and release (KE2), and antagonism of postsynaptic receptors
blocked neural signal transportation (KE3). These two KEs then led to neu-
rotransmitter imbalance (KE5), which in turn caused neurotransmission
impairment (KE6) from the reception process. MIE3 was defined as inhibi-
tion of SLC transporters, which resulted in a reduction of neurotransmitter
reuptake to presynaptic neuron (KE4). This event aggravated neurotrans-
mitter imbalance (KE5), including causing released neurotransmitters to
accumulate in the gap, which led to neurotransmission impairment (KE6)
from the reuptake process. Finally, MaE caused neurotoxicity by impairing
neurotransmission by inhibiting the release, reception, and uptake of
neurotransmitters.

3.4. Priority compounds

Among 46 active targets screened bymachine learning, 21were obtained
from PDB with X-ray structures and thence selected for molecular docking
(all docking scores are provided in Table S5). From predicted MaE activity,
Fig. 3. The potential AOP of neurotoxic
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we selected nine priority chemicals from 354 MaE chemicals based on
sorting of the number of active targets, binding score, molecular weight
and log Kow (Table 2). All of these chemicals had binding affinity lower
than −6.0 Kcal/mol, log Kow between 1.9 and 4.8, and molecular weight
ranging from 220 to 524. All of the priority chemicals demonstrated binding
affinity for at least 14 targets. For example, LysoPC(16:0) and 2-acetyl-1-
alkyl-sn-glycero-3-phosphocholine were active for 17 of 21 intended
targets, respectively, 1,2-Bis(1-ethoxyethoxy)propane was active for 16
targets, egonol glucoside was active for 15 targets, and phytosphingosine
was active for 14 targets.

4. Discussion

Neurotoxic compounds in MaE have received considerable atten-
tion. In this study, we identified nine priority compounds with potential
for neurotoxicity. For example, among these chemicals egonol glucoside
is a benzofuran which inhibits ACHE and BCHE (Liu et al., 2011).
Phytosphingosine is a component of sphingolipids, the latter of which
may be responsible for mediating tumor necrosis factor neurotoxicity
(Martinez et al., 2012). Lysophosphatidylcholines (LysoPC) (16:0) and
(18:1(9Z)) induce an increase calcium influx and stimulate inflamma-
tion response though interleukin -1β in a dose- and time-dependent
manner (Liu-Wu et al., 1998; Rolin et al., 2013). 2-acetyl-1-alkyl-sn-
glycero-3-phosphocholine is a pro-inflammatory mediator (Chaithra
et al., 2018). We summarize that these priority compounds of MaE
cause calcium dysregulation, inhibit ACHE activity, and result in inflam-
mation and cell death. According to our AOP, these chemicals can also
block CACNA1A to reduce the release of neurotransmitters, antagonize
the reception of neurotransmitters to block neural signal transportation,
and inhibit transporters to suppress reuptake process. These effects are con-
sistent with the mechanism of activity of neurotoxins, such as interfering
ity of M. aeruginosa exudates (MaE).



Table 2
Potential neurotoxic compounds in MaE.

Name Structure Number of action targets Log Kow Molecular weight

LysoPC(16:0) 17 4.2 496.7

2-acetyl-1-alkyl-sn-glycero-3-phosphocholine 17 4.8 523.7

1,2-Bis(1-ethoxyethoxy)propane 16 1.9 220.3

Egonol glucoside 15 1.9 488.5

Lauroyl diethanolamide 15 2.8 287.4

Polyoxyethylene (600) monoricinoleate 15 4.6 340.5

Dihydrosuberenol 15 3.1 262.3

Phytosphingosine 14 3.9 317.5

LysoPC(18:1(9Z)) 14 4.1 522.7
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with neurotransmitter storage and release processes (Schiavo et al., 2000),
changing ion concentrations (Parsons and du Bois, 2013), and inhibiting
inter-neuron communication (Ferrari et al., 2013). Referring to KEs' rela-
tionship in AOPWiki, these effects will further result in increased cell
death and decreased synaptogenesis, then cause neuroinflammation in
organs, and impair learning and memory. While few of these priority
compounds have been explored in neurotoxicity studies, we propose that
neurotoxicity of MaE is likely related to these priority compounds. Further
validation is needed for the identification of neurotoxic effects. In our other
studies, we selected phytosphingosine - which has high binding affinity to
our MIEs to treat human astrocyte (HA1800) – to test its neurotoxicity. We
found that phytosphingosine exhibited significant neurotoxicity based on
decreased nerve cell viability, abnormal nuclear morphology, elevated
intracellular ROS, damaged cytoskeleton and mitochondria, and DNA
damage in exposed cell cultures (unpublished data). Selected priority
compounds identified herein thus warrant additional study to examine
potential neurotoxic effects.

Much effort has been focused on the neurotoxicity mechanism of
cyanobacterial secondary metabolites (Aráoz et al., 2010). Bioactivity evi-
dence of priority substances and our results indicate that suppression of
neurotransmission resulting from the imbalance of calcium homeostasis
and the blocking of neural signals is largely responsible for the detrimental
effects of MaE. This parallels that cyanobacterial neurotoxins caused harm-
ful outcomes by acting on synapses or voltage-gated ion channels (Buratti
et al., 2017). In addition, these MIEs in AOP can initiate other conse-
quences. For example, blocking CACNA1A not only substantially hampered
neurotransmission (Krick et al., 2021), but also enhanced presynaptic cal-
cium influx (Scheuber, 2004). Reducing activity of SLC6A3 and SLC18A2
led directly to the production of hazardous alpha-Synuclein oligomers
through dysregulation of dopamine levels (Bridi and Hirth, 2018) and the
onset of neurodegenerative disease. Furthermore, MaE inhibited metabolic
enzyme activity, blocked sodium channel (SCN1A) activity, and activated
apoptotic pathways (such as JUN and BAX) (Table S4). Our recent study
has validated that MaE down-regulates gene expression and content of
HTR, DR, ADR and SLC in fish embryos (Cai et al., 2022), which essentially
6

matches predicted targets of action. We systematically analyzed the target
of action of MaE according to the number of active compounds, however
the bioactivity of the mixture is complex and it is possible that the total ef-
fect exceeds individual effects (Hsieh et al., 2021). Therefore, the neurotox-
icity of the priority compounds and their toxic contribution inMaE-induced
neurotoxicity needs further attention in future studies.

Our study contributes to the identification of the neurotoxicmechanisms
associated with MaE chemicals and to the screening of priority compounds
for future monitoring. As problems associated with cyanobacteria are grow-
ing globally, it is crucial to identify neurotoxic substances from among the
many compounds produced. There exist two main methods for monitoring
the harm of cyanobacterial secondary metabolites. First, one can assess
cyanobacterial cell counts in the field (e.g. Ibelings et al., 2014; Subbiah
et al., 2019). This method may provide basic warnings when data on bioac-
tivity of metabolites is lacking, but the relationship between the number of
cells and the concentration of cyanotoxins is uncertain (Subbiah et al.,
2019). A second, more advanced approach is tomonitor for presence of spe-
cific cyanotoxins. Among the cyanobacterial toxins monitored by the United
States Environmental Protection Agency, MCs are the main substances
detected in M. aeruginosa for hepatotoxicity, while ANTX-a is monitored
for nervous system damage (Loftin et al., 2016). However, only a few
compounds are monitored for risk management, including ANTX-a for neu-
rotoxins. ANTX-a is mainly produced by Anabaena flos-aquae. Neurotoxins
and their consequences are largely ignored if cyanobacterial blooms are
dominated by other species, especially with regard toM. aeruginosa. In this
study, we screened nine priority compounds that have not been detected
in the field yet. As current detection indicators are imperfect, many metab-
olites are not monitored with respect to potential neurotoxicity. We
propose that screening of additional potential priority neurotoxins, such
as phytosphingosine, be considered in future monitoring programmes.

5. Conclusion

In this study, we usedmachine learning supervised gradient boosting clas-
sifiermodels based onToxCast assays andmolecular docking to systematically
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analyze potential neurotoxins present in MaE. MaE mainly inhibited
neurotransmission-related targets, interfering with neurotransmitter release,
reception, and reuptake mechanisms. We proposed an AOP that MaE blocked
CACNA1A and antagonized neurotransmitter receptors and inhibited SLC
transporters to impair neurotransmission. We screened nine priority com-
pounds from a MaE mixture based on targets of action and suggest that
these potential neurotoxins be considered in cHAB water quality monitoring
programmes. This study expands our knowledge of neurotoxicity mecha-
nism(s) and important neurotoxins of cyanobacterial blooms which will be
beneficial to water security management.
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