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ARTICLE INFO ABSTRACT

Keywords: Describing and understanding species distributions and the factors driving them is fundamental to ecology and

Aedes biogeography. Species distribution models (SDMs) allow one to investigate objectives of identifying ecologically

Ce"tmfd . . important factors to the distribution, estimating species-environment responses, predicting the probability of

f:l?;gcli';:l:;};zo‘jenmg species occurrence, and predicting species presence or absence. Mosquito occurrence records used in SDMs are

Scale often imprecise and represented as a centroid of a geopolitical/administrative boundary. Using a virtual species,

Species distribution modelling we investigated the effect of centroids on SDMs and determined which methodology was best suited to provide
accurate and applicable conclusions for each of the objectives. We compared 12 distinct algorithms, four levels of
pseudo-absences, and three predictor sets to determine the optimal SDM methodology for each objective. The
ability of methodology considerations to account for the effects of centroids varied for each objective. Ecolog-
ically important predictors were misidentified but could be best approximated by generalized additive models
with 10,000 pseudo-absences. Response curves only captured the expected positive or negative trends. Centroids
limited SDMs’ ability to differentiate expected probabilities, resulting in overprediction of high probability areas.
Response curves and occurrence probabilities were best estimated by generalized boosting regression models.
Species presence was largely over-estimated within southern regions, but underpredicted in northern regions,
and was best estimated by weighted mean ensembles. Overall, generalized boosting regression methods and
(weighted) mean ensembles provided the most reliable conclusions across all four objectives. Further, the most
reliable conclusions were consistently observed with equal pseudo-absences when considered with the removal
of low-contributing predictors, except for predictor identification.

1. Introduction and predictor variables considered (Wisz et al., 2008; Synes and

Osborne, 2011; Heikkinen et al., 2012). Previous comparisons have

Species distribution models (SDMs), also known as ecological niche
models, are powerful tools to correlate the occurrence of a species with
environmental predictors to explain and/or predict a distribution
(Guisan and Zimmermann, 2000). Explanations of distributions include
testing hypotheses related to identifying ecologically important condi-
tions which determine the distribution (Bradie and Leung, 2017),
and/or estimating species-environment response curves (e.g. Ikegami
and Jenkins, 2018). Meanwhile, SDMs predict the probability of
occurrence (e.g. Jarnevich and Reynolds, 2011) and/or the expected
presence or absence of a species (e.g. Johnson et al., 2017) in geographic
and temporal space.

The ability of SDMs to explain and/or predict a distribution depends
on, but not limited to, the algorithm, number and quality of response
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indicated that different algorithms are better suited for other objectives
and input data (Heikkinen et al., 2012; Aguirre-Gutiérrez et al., 2013).
The response variable consists of presences, absences, abundance, or
species richness of target species or subjects (Elith et al., 2006; Wisz
et al., 2008). Absence records are rarely available or reliable, with
pseudo-absences applied instead (Barbet-Massin et al, 2012).
Pseudo-absences represent a location where the species has not been
observed, whether sampled or not and is presumed to be absent without
a validating absence record (Grimmett et al., 2020). Predictors reflect
the abiotic or biotic conditions for which responses are considered
(Guisan and Zimmermann, 2000). Though only predictors with solid
evidence indicating a causal relationship with the species’ distribution
should be considered when possible, and generally higher number of
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response variables is recommended (Austin, 2002; Wisz et al., 2008; but
see Boria and Blois, 2018). Scale is one of the qualities of response and
predictor variables that affects SDM performance (Lechner et al., 2012;
Lecours et al., 2015). Depending on the context, scale relates to the
spatial relationship at which a species interacts with the environmental
influences (i.e. dispersal range) (Jackson and Fahrig, 2015), the spatial
characteristics of the occurrence records (i.e. sampling unit, area of
observation, positional accuracy) or predictors (i.e. cell size, grain,
resolution), or the spatial and temporal accuracy applied to the SDM to
analyze the distribution (Lecours et al., 2015). For this paper, we use
scale to describe the level of spatial detail for each form of data.

Failure to explicitly consider the scale can limit SDMs ability to
provide reliable conclusions, which are applicable and accurate to aid
management actions, are directly affected (Moudry et al., 2019). The
applied scale must satisfy SDMs’ assumptions of i) the occurrence re-
cords contain no error; and ii) the provided environmental predictors
are representative of the physiological tolerances or resource re-
quirements of the species’ niche (Austin, 2002; Osborne and Leitao,
2009). However, response quality and predictor variable availability
limit the choice of scale, specifically irregular lattice occurrence records
(i.e. administrative regions centroids) with high geographic uncertainty
(Cheng et al., 2021; Connor et al., 2018) Response quality limits the
geographic precision, while predictor scale limits the level of environ-
mental and temporal detail available (Connor et al., 2018; Lawler et al.,
2006). Previous investigations suggested that half or more of repository
occurrence records (i.e. presence/absence) within the United States and
select species in Europe are geographically inaccurate and represent
centroids of administrative/geopolitical boundaries, hereafter centroids
(Collins et al., 2017; Park and Davis, 2017; Cheng et al., 2021).
Consideration of centroids in SDMs alters variable contribution assess-
ment, interpretation of responses, and an overall decrease in predictive
ability (Johnson and Gillingham, 2008; Osborne and Leitao, 2009;
Naimi et al., 2011).

Many methodological approaches have been suggested but cannot
entirely correct the imprecision of centroids (e.g. Aratijo and New, 2007;
Pacifici et al., 2019). Considering the mean predictor value within each
boundary may limit the effect of centroids (Park and Davis, 2017).
However, aggregation causes a loss of fine-scale variation, which may be
an important determinant of species distributions. Therefore is not
practical for large boundaries (Collins et al., 2017; Cheng et al., 2021).
Additionally, aggregation increases potential artifact effects through the
modifiable areal unit problem (MAUP;Openshaw 1984). MAUP is a
source of statistical bias where correlations can vary from positive to
negative depending on the aggregation scale (i.e. county, state)
(Goodchild, 2011). Accordingly, the resulting aggregated scale satisfies
assumption (i) but potentially violates (ii) through obscuring fine-scale
variation and MAUP effects (Pearson and Dawson, 2003; Moudry and
Sfmova, 2012; Manzoor et al., 2018). Further, SDMs calibrated with
centroids are often misleading (Nelson, 2001; Lecours et al., 2015).

SDM applications are limited, owing to the abundance of centroids
for some species and geographic regions to produce sophisticated SDMs
(Duputié et al., 2014). Reliable SDMs conclusions can only be estab-
lished if the applied scale captures important environmental charac-
teristics of the species’ distribution (Vergara et al., 2016). Issues related
to centroids remain impossible to solve without accurate occurrence
data (Josselin and Louvet, 2019). Regardless, the application of cen-
troids is common practice in SDMs of epidemiologically relevant species
in North America (e.g. Escobar et al., 2013; Johnson et al., 2017). For
example, occurrence records of the arbovirus vector mosquitoes Aedes
aegypti and Aedes albopictus are predominately available as county
centroids within the U.S. (Hahn et al., 2017) A. aegeypti and A. albopictus
can transmit over 20 pathogens, including zika, chikungunya, dengue,
and yellow fever viruses (Leta et al., 2018). Aided by human-mediated
dispersal and high eco-plasticity, both species have rapidly expanded
their range in recent years, causing increased introduction and incidence
of pathogens within novel regions (Weaver, 2014; Ibanez-Justicia,
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2020). Johnson et al. (2017) predicted the distribution of A. aegpyti and
A. albopictus within the contiguous U.S. from county centroids. They
indicated the unlikely occurrence of both species within Wayne County,
MI (Johnson et al., 2017). However, both species were recorded across
the border in the Windsor-Essex region of south-western Ontario, Can-
ada, from 2017 to 2019 (Giordano et al., 2019), with A. albopictus
continuing to be present through June 2021 (Windsor-Essex Health
Unit, 2021). Therefore, concern exists that SDMs trained with centroids
may not provide reliable conclusions.

There is increasing awareness that SDMs must be tested and designed
for the desired objective using available data (Aguirre-Gutiérrez et al.,
2013; Guillera-Arroita et al., 2015; Aratjo et al., 2019). The effect of
centroids on different SDM algorithms, quantity of response and pre-
dictor variables is unknown. Previous investigations of SDMs calibrated
with centroids are limited to the probability of occurrence predictions by
Maximum Entropy (MaxEnt; Collins et al., 2017; Park and Davis 2017;
Cheng et al., 2021). Given the availability of multiple algorithms, it is
therefore vital to assess the effect of administrative centroids on
different algorithms to achieve common SDM objectives. Common SDM
objectives include identifying ecologically important predictors, esti-
mating species-environment response curves, predicting the probability
of occurrence, and classifying presence-absence maps (Aguirre-Gu-
tiérrez et al., 2013; Aratijo et al., 2019). Here, we provide an in-depth
analysis of SDMs’ ability to achieve these common objectives for
epidemiologically relevant species of mosquitoes based on centroid oc-
currences of a virtual species in North America. To simulate reality, we
created a virtual species to resemble epidemiologically relevant species
with known administrative region centroid occurrences, A. aegypti and
A. albopictus. We focus on assessing SDM’s ability to explain a species’
niche by identifying the correct ecologically important predictors and
estimating appropriate species-environment responses. Additionally, we
determine the ability of SDMs to predict the probability of occurrence
and binary presence-absence maps from centroids. Lastly, we investi-
gated which SDM methodology is best suited to interpret centroids
across all described objectives. This work will guide the use of centroids
in SDMs to improve the reliability of conclusions for public health
applications.

2. Methods

We constructed a realistic virtual species to simulate real-world
application of centroids, with the environmental suitability traits
based on A. aegypti and A. albopictus. Environmental suitability of both
species has been primarily related to temperature for development and
survival (Brady et al., 2013; Eisen et al., 2014). Additionally, both
species are container-breeding species that rely on precipitation for
suitable reproduction conditions in natural or human-made containers
(i.e. tires, flower plots) (Gama and Islamiyah, 2013; Dhimal et al., 2015).
A. albopictus has successfully established in more northern areas,
attributed to its ability to diapause and survive cold winters (Denlinger
and Armbruster, 2014). A. aegypti has only demonstrated diapause in
some populations (Lima et al., 2016). Both species occur beyond envi-
ronmentally suitable areas by employing micro-niches as refugia when
the macro-climate is unsuitable (Hayden et al., 2010; Murdock et al.,
2017). A. aegypti is mainly found in urban areas and has an anthro-
pophilic feeding habit. A. albopictus inhabits urban, peri-urban, rural, or
forested habitats and is an opportunistic feeder (Yang et al., 2021).
When species distributions overlap, A. albopictus is a superior larval
competitor, and A. albopictus males will cross-mate with A. aegypti fe-
males causing reproductive losses (Braks et al., 2004; Lounibos et al.,
2016).

2.1. Predictor variables

Based on the literature, we considered predictors that have direct
and indirect effects on A. albopictus and A. aegypti, including climate,
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topography, land cover and use, vegetation indices, and socioeconomic
predictors (Larson et al., 2010; Mughini-Gras et al., 2014; Alahmed
et al., 2015). We calculated the aggregate means of each predictor to
represent mean administrative boundary predictor values with Zonal
Statistics in ArcGIS 10.6 (ESRI, 2008) Boundary land cover and use
categories were represented by the mean percent land cover and use per
category within a boundary. We assessed multi-collinearity using
Pearson’s correlation matrix followed by the variance inflation factor
(VIF) (Leroy et al., 2016; Naimi et al., 2014). Multi-collinearity was
evaluated at the original 1 km? and aggregated scale to address all po-
tential collinearity. We excluded highly correlated variables (|r|>0.7,
VIF >10) to prevent analysis errors (Dormann et al., 2013). We manu-
ally selected a single predictor from each highly correlated group
(Table 1; S1).

We calculated some predictors before aggregation. Growing degree
days (GDD) represented the magnitude of mean monthly temperatures
above a baseline temperature of 5 °C, below which development or
survival cannot occur (McMaster and Wilhelm, 1997). We calculated the
selected bioclimatic variables (annual mean temperature (BIO1), mean
diurnal temperature (BIO2), precipitation of the wettest month (BIO13),
and precipitation of the driest month (BIO14)) and GDD from Daymet
version 4 monthly climate summaries (Thornton et al., 1997, 2017) in
dismo and envirem R packages, respectively (Hijmans et al., 2017;
Bemmels, 2018). Additionally, we estimated human population density
from the most recent census data for each administrative boundary as a
proxy for rural and urban areas, as well as anthropophilic nature of
A. aegpyti (National Institute of Statistics and Geography, 2018; Statis-
tics Canada, 2018; U.S. Census Bureau, 2017; Yang et al., 2021). We
applied the normalized difference vegetation index (NDVI) to quantify
vegetation greenness and provide an understanding of vegetation den-
sity (Pettorelli et al., 2005). We restricted the geographic extent to North
America with administrative regions represented by Canadian health

Table 1
Predictor variables considered. Asterisks indicate predictors which were calcu-
lated from source data.

Predictor Abbreviation  Scale Source
Annual mean BIO1 1 km? Thornton et al., 1997,
temperature® 2017
Mean diurnal BIO2
temperature®
Precipitation of the BIO13
wettest month*
Precipitation of the BIO14
driest month*
Growing degree GDD
days*
Snow cover SC 24 km? Brown and Brasnett,
2010
Elevation EV 30 ‘onds Earth Resources
Observation and
Science Center, 2017
Deciduous broadleaf L_DBF 0.05° Friedl et al., 2010
forests
Evergreen needle L_ENF
leaf forests
Mixed forests L_MF
Urban settlements L_UB
Water LWT
Woody savannas LWS
Normalized NDVI 0.1° Allen and Stockli, 2018
difference
vegetation index
Human population PD Canadian Statistics Canada, 2018
density health
regions

U.S. counties U.S. Census Bureau,
2017

Mexican National Institute of
States Statistics and

Geography, 2018
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regions, U.S. counties, and Mexican states, resulting in a mean scale of
6424 km? (Table S2).

2.2. Virtual species design

We designed a virtual species through the virtualspecies R
package (Leroy et al., 2016). We designed the habitat suitability to
reflect common characteristics of A. aegypti and A. albopictus based on
annual mean temperature, precipitation of the wettest month, and
elevation at the most detailed available scale of 1 km?. This scale was
appropriate as both species have mean flight ranges of <1 km (Ver
donschot and Besse-Lototskaya, 2014). However, this scale would not
reflect appropriate micro-niches or refugia. Annual mean temperature
related to survival and development (Reinhold et al., 2018). Precipita-
tion of the wettest month indicated the availability and quality of
oviposition sites for reproduction (Becker et al., 2010). Lower elevation
related to increased human disturbance, creating more breeding habi-
tats through artificial water-holding containers (Gama and Islamiyah,
2013; Dhimal et al., 2015). Accordingly, we determined the virtual
species’ habitat suitability from defined responses of each predictor
within North America (Fig. 1a). We modeled the virtual species’ habitat
suitability by a multiplicative suitability index of annual mean tem-
perature, precipitation of the wettest month, and elevation as p-function,
logistic, and linear responses, respectively (Fig. 1a-c; Supplementary
methods). A B-function pattern allowed for specific upper and lower
thresholds with different slopes, representing temperature thresholds for
survival and development (Cunze et al., 2016; Koch et al., 2016). The
logistic function represented a gradual increase in suitability to a
maximum asymptote, reflecting the availability of oviposition sites as
precipitation increased (Alaniz et al., 2017). We expressed elevation as a
piecewise linear decrease representing lower host population and
pooling water availability at higher elevations (Alaniz et al., 2017;
Santos and Meneses, 2017). We interpreted habitat suitability as the
probability of occurrence for comparison of SDMs. The final probability
map was visually examined to ensure similarity to published predictions
of A. aegypti and A. albopictus for ecological realism (Fig. 1b).

2.3. Modeling building

To train SDMs, we created a geographically-structured response by
converting the suitability index into presence-absence records (Fig. 1b,
c). We randomly generated 3500 unique, 1 km spatially thinned and
corrected by suitability presence-only records within the contiguous U.
S. and Mexico. These records were then converted into centroids, such
that all occurrences within a boundary were represented by one
centroid, resulting in 1414 centroids.

To assess SDM methodology for centroid occurrences, we investi-
gated common model building choices of the: algorithm; the number of
pseudo-absences generated; and predictor variable selection (Fig. 1d, e).
These choices represent how the species-environment relationship is
interpreted, characterized, and assessed and predicted against (Elith
et al., 2006; Wisz et al., 2008; Aguirre-Gutiérrez et al., 2013).

2.3.1. Algorithms

We applied twelve different distinct algorithms in either their orig-
inal software, denoted by “ O”, or as part of ensemble SDM software,
biomod2 (Thuiller et al., 2020), denoted by “ B” (Table 2). The software
or platform applied potentially impacts SDM performance as each has its
unique features and considerations (Aguirre-Gutiérrez et al., 2013;
Guillera-Arroita et al., 2015). The ensemble SDM framework provided
by biomod?2 is the most widely used within the SDM literature (Hao
et al., 2019). However, the black-box nature of the biomod2 framework
results in only rough model calibrations. It inflates model evaluations by
rescaling predictions by a binomial generalized linear model (Thuiller
et al., 2009) not present in the original software. Thus, a comparison of
original and biomod2 methods assesses the consideration of software
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Fig. 1. Methodology workflow of virtual species design, model building, and evaluation. Virtual species were designed according to response curves from real
environmental values of annual mean temperature (BIO1), precipitation of the wettest month (BIO13), and elevation (a), calculation and mapping of virtual species
suitability index (b) and converted suitability index to binary training centroid occurrences (red polygon), presumed absences (gray polygon), testing occurrences
(red dots) and absences (black dots) (c). Model building consisted of determining random pseudo-absences (white dots) within regions without an occurrence (red
dots) at four levels (d), then one of three predictor selection methods, a priori, expert, or re-trained with automated predictor selection derived from a priori measure
of variable contribution (e). Model evaluation was divided into SDMs’ ability to explain or predict a distribution. SDMs’ ability to explain was evaluated through their
ability to identify the ecologically important predictors by Jaccard index, J, where S; is expert predictors, S, is the automated predictors, and red areas indicate the
values considered to calculate J (f) and estimated response curve (orange-dashed line) accuracy relative to expected species-environment response curve (solid black
line) by root mean square error and Spearman’s correlation (g). Evaluation of predictions was determined by predicted probability of occurrence predictions (h)
compared to true probability (b) and classification of binary presence-absences maps at a minimal training presence threshold (i).
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Table 2
SDM algorithms implemented and corresponding R package.
Class of Algorithm Abbreviation  Software Reference
model
Machine Artificial ANN_O nnet Venables
learning neural and
network Ripley,
2002
ANN B biomod2 Thuiller
et al., 2020
Maximum MaxEnt O dismo Hijmans
entropy et al,, 2017
MaxEnt B biomod2 Thuiller
et al., 2020
MaxLike MXL O maxlike Royle et al.,
2012
Random forest RF O randomForest Liaw and
Wiener,
2001
RF B biomod2 Thuiller
et al., 2020
Regression Classification CTA O rpart Therneau
tree analysis and
Atkinson,
2019
CTAB biomod2 Thuiller
et al., 2020
Generalized GAM_O gam Hastie,
additive 2020
model GAM_B biomod2 Thuiller
et al., 2020
Generalized GLM_O Base R R Core
linear model Team 2019
GLM_B biomod2 Thuiller
et al., 2020
Multiple MARS_O earth Milborrow
adaptive et al., 2019
regression MARS B biomod2
splines
Flexible FDA O mda Hastie
discriminant et al., 2020
analysis FDA B biomod2 Thuiller
et al., 2020
Regression, Generalized GBM_O gbm Greenwell
boosting boosted et al., 2020
regression GBM_B biomod2 Thuiller
method et al., 2020
Envelope Surface range SRE_O dismo Hijmans
envelopes et al., 2017
SRE B biomod2 Thuiller
et al., 2020
Ensemble Committee EMca B biomod2 Thuiller
average et al., 2020
Mean EMmean_B
Median EMmedian B
Weighted EMwmean B
mean

selection on model reliability. We constructed the original regression
and random forest models using additive formulas. Also, we calibrated
the original generalized linear models with first and second-order
polynomial variables of all predictors to reflect corresponding bio-
mod2 formulas. Otherwise, all algorithms were run with default settings
for simplicity and comparison (Table S3). For descriptions of each al-
gorithm, see Elith et al. (2006), Aratijo and New (2007), Reiss et al.
(2011), and Fitzpatrick et al. (2013).

2.3.2. Pseudo-absences

We considered pseudo-absences for model training to simulate
common practice instead of known absence. Pseudo-absences must be
derived from areas accessible to the species (Barve et al, 2011).
A. aegypti and A. albopictus are primarily distributed by human activity
(Eritja et al., 2017). Thus, all administrative boundaries were considered
accessible. Accordingly, we generated 100,000 pseudo-absences at least
1 km apart within the 1761 boundaries without a centroid occurrence in
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the contiguous U.S. and Mexico. We considered pseudo-absence
numbers equal, double, or triple the number of centroids (1:1, 1:2,
1:3, respectively) (e.g. Tiffin et al., 2019) or a total of 10,000. We
determined 100 unique training sets per pseudo-absence level consisting
of all centroid occurrences and a random subset without replacement of
all pseudo-absences to ensure consistent training (Fig. 1d).

2.3.3. Predictor selection

We considered predictor selection by a priori, automated, and expert
selection. A priori represented all predictors with suspected direct, in-
direct, or resource effects (e.g. Low et al., 2021). Alternatively, ecolog-
ically important predictors are estimated from a priori by the percent
reduction in model fit when each predictor is randomly permuted,
hereafter automated (Harisena et al., 2021). To demonstrate each pre-
dictor selection, we first trained SDMs with all predictors to represent a
priori (Table 1). For each a priori training set, we calculated predictor
importance per algorithm and pseudo-absence level. Predictor impor-
tance was assessed by randomizing a single predictor variable position,
then making a new prediction with the new randomized predictor var-
iables. Predictor importance reflects the difference between Pearson’s
correlation of the original and randomized predictors’ prediction from
one (Thuiller et al., 2020). We repeated this process 1500 times per
predictor to allow for adequate convergence. Predictor importance was
determined by functions in biomod2 or equivalent functions in caret R
packages for original algorithms (Kuhn, 2020; Liaw et al., 2019; Thuiller
et al., 2020). We converted the predictor contribution measures to
percent contribution such that all values for a single repetition summed
to one. Automated predictors represented predictors with greater than
5% mean contribution across all training sets per algorithm and
pseudo-absence level. We demonstrated expert predictors by consid-
ering only the driving predictors of annual mean temperature, precipi-
tation of the wettest month, and elevation (Fig. 1e). Therefore, we
generated and compared 30,000 SDMs (25 algorithms x 4
pseudo-absence levels x 3 predictor selections x 100 training sets). We
trained SDMs with an 80% random subset of training sets. Algorithms
included in ensembles achieved a sensitivity of >95% (see Model eval-
uation) of omitted training presence records.

2.4. Model evaluation

We evaluated centroid explanation ability by identifying expected
important predictors and response curve estimation (Fig. 1f, g). We
evaluated predictive ability by the accuracy of the predicted probability
of occurrence and binary discrimination (Fig. 1h, i). Each algorithm
provided a different range of probabilities for interpretation. Conse-
quently, we normalized all predictions before evaluation. Details of all
evaluations are available in Supplementary methods.

2.4.1. Identification of ecologically important predictors

The Jaccard index (J) quantified the ability to identify ecologically
important predictors (Fig. 1f). J is a measure of similarity between two
datasets. J ranges from zero to one, such that one and zero indicate
identical and no similarities, respectively (Jaccard 1908). We deter-
mined J between automated and expert predictors. For each training set
and SDM, we determined how many of the three predictors used to
create the virtual species were selected during automated selection and
divided by the total number of unique automated and expert predictors
(e.g. Inman et al., 2021) (Fig. 1f).

2.4.2. Response curve estimation

We calculated response curves for each predictor used to create the
virtual species by extracting the predicted probability and correspond-
ing aggregated predictor values. We smoothed the resulting responses
by generalized additive smoothing to ensure a single probability per
environmental value. Expected responses were calculated for each
environmental value and compared by root mean square error (RMSE)
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and Spearman’s correlation (p) (Fig. 1 g). RMSE provided a measure of
variation between the expected and estimated response values. Larger
RMSE values indicated a greater error in estimated responses. p indi-
cated if the estimated response curve determined the appropriate
pattern relative to the expected one. p ranged from —1 to 1, with
negative values indicating negative correlation, zero no association, and
positive values indicating a positive correlation.

2.4.3. Probability of occurrence

We evaluated the predicted probability of occurrences by a full
diagnostic verification by calibration, bias, skill, accuracy, refinement,
and resolution of training and testing regions (Murphy and Winkler
1992). Calibration described the degree to which relative suitability of a
presence correlated with predicted probability. Bias indicated the de-
gree to which the predicted probability differed from the known prob-
ability of occurrence. Skill measured the accuracy of the predicted
probability relative to an expected binary prediction. Forecast accuracy
reflected the overall degree to which binned predicted probability cor-
responded to the expected binned probability of occurrence. Refinement
indicated the mean square difference of binned predicted and expected
probability values. Resolution described the ability of SDMs could
separate different probabilities relative to expected separation (Murphy
and Winkler 1992). Training evaluations represented comparisons of the
predicted and expected probability of occurrence within the contiguous
U.S. and Mexico, and testing evaluation was within Canada and Alaska
unless otherwise stated.

We assessed calibration by the continuous Boyce index (CBI) in the
ecospat R package (Broennimann et al., 2020). CBI measures the
prediction accuracy of occurrence events by determining the Spearman
rank correlation coefficient of the predicted-to-expected ratio. CBI
values of one, zero, and negative indicated predictions consistent with
occurrences, equal to random, and inconsistent with occurrences,
respectively (Boyce et al., 2002; Hirzel et al., 2006). Training CBI was
determined by 20% of withheld occurrences. Testing CBI was evaluated
against 2000 generated unique, spatially thinned by 1 km, and corrected
by suitability presence-absence records within Canada and Alaska
(Fig. 1¢).

We determined the unconditional bias and skill by mean absolute
error (MAE) and the associated skill score (SS), respectively (Murphy
,1988; Roebber, 1998). MAE was the mean difference between predicted
and expected probability values. An MAE value of zero indicated accu-
rate predictions, and greater values indicated a higher error in pre-
dictions. SS was a mean square error measure between predicted
probabilities and expected binary outcomes. A SS value of one indicated
perfect skill, with greater than zero indicating better than random, and
less than zero indicated worse than random. MAE and SS were deter-
mined by extracting corresponding predicted and expected probability
values into the appropriate formulas (Supplementary methods).

Brier score (BS) represented forecast accuracy (Murphy and Winkler,
1992). BS assessed the mean squared error between predicted and ex-
pected binned probabilities. A value of zero indicated accurate pre-
dictions, 0.25 indicated predictions are equal to random, and greater
than 0.25 indicated predictions are inaccurate and worse than random
(Brier, 1950). Refinement and resolution were quantified as part of BS
and examined qualitatively by attribute figures (Hsu and Murphy,
1986). Higher refinement indicated a greater difference in predicted and
expected binned probabilities, and zero indicated no difference. Higher
resolution values indicated a greater ability to separate different prob-
abilities, with a minimum of zero, which indicated no separation
(Murphy and Winkler, 1992). We interpreted attribute diagrams ac-
cording to the categorization of reliability based on the slope of the
resulting reliability line; perfect, useful, marginally useful, not useful, or
dangerously useless predictions (Weisheimer and Palmer, 2014). BS,
refinement, and resolution values were determined through the
verification R package (NCAR, 2015).
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2.4.4. Presence-absence map

We evaluated the binary presence-absence predictions by discrimi-
nation. Discrimination determined the threshold-dependent ability of an
SDM to classify presence or absence (Fielding and Bell, 1997). We used a
minimal presence threshold of omitted training centroids to create bi-
nary maps. We defined discrimination by sensitivity, specificity, preci-
sion, F1 score, and correct classification rate (CCR) (Fielding and Bell,
1997). Sensitivity and specificity were the probability that known
presences or absences were predicted correctly, respectively. Precision
was the probability that a predicted occurrence was an observed
occurrence. F1 score was the harmonic means of sensitivity and preci-
sion. CCR is the conditional probability that presence and absences were
correctly classified (Fielding and Bell, 1997). All discrimination metrics
ranged from zero to one, such that one indicated perfect discrimination
while those < 0.5 indicated random discrimination. This range of
discrimination metrics provided a complete perspective of SDMs’ ability
to classify presence and absences.

Training discrimination was evaluated against the 20% of presence
and pseudo-absences withheld. Meanwhile, discrimination was tested
against the 2000 presence-absences within Canada and Alaska described
previously (Fig. 1¢). Accounting for the black-box nature of biomod2,
SDMs were trained and projected with a pre-determined 80% presence
and pseudo-absence subset. Subsequent thresholds were determined by
evaluating prediction against the 80% training data by threshold and
evaluation functions in dismo R package (Hijmans et al., 2017). Lastly,
the fit of each probability and binary evaluation was assessed by the
minimum difference between training and testing evaluations. The
minimal difference is based on the logic that overfit models will predict
the training data well, but poorly on test data. Positive values indicate
over-fit, while negative values indicate under-fit models (Warren and
Seifert, 2011).

2.5. Analysis

Variation in reliability among model building choices was deter-
mined through Type II Wald y? tests fit by linear mixed-effects models in
the car and 1merTest R packages (Kuznetsova et al., 2017; Fox and
Weisberg, 2019). Mixed-effects models allowed for the examination of
each model building consideration while accounting for repeated mea-
sures on training sets. We determined a single mixed-effect model for
each validation and evaluation metric. Mixed-effects models for J
included fixed effects of algorithm and pseudo-absences interaction with
random effects of the training set. We considered algorithm,
pseudo-absence number, and predictor selection method as fixed effects
and training set as a random effect in the mixed-effects model for
response curve estimation and prediction evaluations. We transformed
all evaluations by order quantile normalization before statistical anal-
ysis to normalize mixed-effect model residuals (Peterson and Cav-
anaugh, 2020). We examined minimal differences according to their
absolute value to demonstrate deviation from fit.

We determined the mean relative performances of all associated
evaluations to determine which methodology was best suited to identify
ecologically important predictors, estimate species-environment
response curves, predict probability of occurrence, and classify
presence-absence maps. First, posthoc comparisons by estimated mar-
ginal means with Dunn-Sidak correction for pairwise comparisons were
conducted for each validation and evaluation (Length 2020). We con-
ducted posthoc tests on pseudo-absences and predictor selection varia-
tion per algorithm, and between algorithms, pseudo-absence levels, and
predictor selections to determine algorithm-specific, and overall per-
formance patterns, respectively. Second, we assigned the resulting
marginal means a normalized score from zero to one based on their
significance group classification for each posthoc test, such that SDMs
with the same statistical group classification received the same score.
We assigned the relative performance of one to the highest or lowest
mean if the target value was one (highest) or zero, respectively
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(Table S4). We interpreted these ranks to represent poor, fair, average,
good, or excellent relative performance (Fig. 5). Third, the relative
performance of each model building consideration combination was
determined by calculating the relative performance mean across each
evaluation per objective. We determined the relative performance of
response curve estimation by the normalized mean of RMSE and p
relative performances for annual mean temperature, precipitation of the
wettest month, and elevation. Similarly, we calculated the relative
performance of overall predictive ability by determining the normalized
mean across all measures of training, testing, and predictive perfor-
mance fit for probability of occurrence and presence-absence map
classification. Overall explanation or prediction relative performance
was determined by the normalized mean across each respective group of
evaluation metrics. Lastly, total relative performance was determined by
the normalized mean of explanation and prediction scores (Table S8).
All SDM computations and analysis were completed in R v.3.6.0 (R Core
Team, 2019).

3. Results

The ability of model building considerations to account for the ef-
fects of centroids varied for identification of ecologically important
predictors, estimation species-environment response curves, predicting
probability of occurrence, and classification presence-absence maps
objectives (p<0.05; Table S6). Evaluating the relative performance per
objective indicated that at least one SDM successfully limited centroid
effects to provide appropriate SDM conclusions (Table S7). However,
model building considerations to optimize each evaluation and objective
were inconsistent between evaluations, objectives, model type, soft-
ware, and within algorithms (Fig. S3-4). Only two algorithms, multiple
adaptive regression splines, and surface range envelopes optimized all
objectives under a single methodology.

3.1. Identification of ecologically important predictors

The ability to identify ecologically important predictors from cen-
troids was poor (J = 0.56+0.25; mean + standard deviation (SD))
(Fig. 2). Only 15% of SDMs identified the ecologically important pre-
dictors. Instead, SDMs typically identified ecologically important and
non-important predictors (57%) or identified two of three ecologically
important predictors with (26%) or without (2%) non-important
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predictors. GDD, NDVI, and precipitation of the driest month were
among the most misidentified by 62%, 39%, and 32% of SDMs,
respectively (Fig. S1). The effect of pseudo-absences was algorithm-
dependent and not consistent within model classes, except envelope
methods. Pseudo-absences did not affect predictor identification for 12
of 25 algorithms. We observed that eight algorithms improved identi-
fication with equal numbers of pseudo-absences, four for 10,000 pseudo-
absences, and one improved at double pseudo-absences (Fig. 2). Overall,
original generalized additive models with 10,000 pseudo-absences
provided the best identification. Generalized linear models from bio-
mod2 with balanced datasets, and ensemble methods excluding com-
mittee average across pseudo-absences, identified all ecologically
important predictors but less consistently. Poor identification was
exhibited by envelope and machine learning methods (Fig. S3a).

3.2. Response curve estimation

Estimated response curves determined appropriate positive or
negative trends (p: 0.71+0.17; mean + SD) but corresponding proba-
bilities were miscalculated (RMSE: 0.42+0.15; Fig. 3). Across ecologi-
cally important predictors, only 1% of response trends were poorly
estimated (p<0). On the other hand, only 1% of responses closely
approximated the appropriate response (RMSE<0.1), and 28% exhibi-
ted high miscalculation (RMSE>0.5) (Table S7). Altogether, only 0.1%
of SDMs resulted in poor trend and response estimation, particularly by
artificial neural networks and committee average ensembles.

Estimated response patterns varied between ecologically important
predictors and based on the platform used (Fig. 3). Annual temperature
response estimates did not capture the expected p-function but indicated
a monotonic increase or a negative unimodal response which over-
predicted at freezing temperatures by biomod2 and original algorithms,
respectively (Fig. 3a). Conversely, precipitation response estimates
captured the expected logistic curve but were accurate only at minimal
and maximal thresholds. Intermediate precipitation values generally
over-estimated corresponding probability, specifically by biomod2 al-
gorithms (Fig. 3b). Responses of annual temperature and precipitation
of the wettest month were further limited by the loss of conditions
greater than 27 °C and 700 mm, respectively, causing truncation
(Fig. 3a, b). Lastly, elevation exhibited the most consistent estimates of
approximately linear monotonic decrease though trends varied (Fig. 3¢).
Original algorithms under predicted occurrence probability at low to

$2:842,0,2. 2 9 @ @ O @
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T

Fig. 2. Mean Jaccard index + standard deviation per algorithm and pseudo-absences. Algorithm-specific effect of pseudo-absences are shown along x-axis indicating
if algorithms observed an effect (*) or not (ns) among pseudo-absences per algorithm. Dashed line indicates perfect identification of ecologically important pre-

dictors. Algorithm abbreviations are provided in Table 2.
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Fig. 3. Algorithm mean responses of annual mean temperature (a), precipita-
tion of the wettest month (b), and elevation (c). Response curves shown
represent generalized additive smoothing. The expected response is shown by
the solid black line. Accuracies of independent models are available in Sup-
plementary material: Table S7.

moderate elevations and over probability at high elevations. Algorithms
from biomod2 only slightly under predicted occurrence at low eleva-
tion, while over predicting occurrence at moderate to higher elevations
(Table S7).

Relative performance evaluations indicated that 72% of algorithms
required training with only the ecologically important predictors and
triple or 10,000 pseudo-absences to improve response estimates
(Fig. S3b). However, five algorithms achieved the highest response
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estimation when considered with equal centroids and pseudo-absences
and automated predictor selection. These five algorithms included the
overall best responses estimated by original generalized boosting
regression methods with balanced training and automated predictor
selection. Excellent response estimation was also exhibited by general-
ized linear models from biomod2 with automated and 10,000 pseudo-
absences (Table 3). The most inaccurate responses were estimated by
envelope and committee average ensembles models (Table S7; Fig. S3b).

3.3. Probability of occurrence

Centroids generally reflected expected presence or absences but
introduced high amounts of error into occurrence probability pre-
dictions owing to an inability to differentiate probabilities (Fig. 4). Most
predictions exhibited little variation with higher-than-expected pro-
portions of low probable areas, supported by training and testing reso-
lutions of 0.04+0.01 and 0.02+0.01 (mean + SD), respectively (Fig. 4c,
e, Fig. §2). Alternatively, areas of high probability were overpredicted
across most of North America, suggesting low probability only within
non-coastal areas of western U.S. and Canada (Fig. 4 g). Low variability
of probabilities provided good calibration and skill. Probabilities were
consistent (CBI>0) with centroids and testing occurrences for 88% and
82% of SDMs, respectively (Table S7). Further, 58% and 62% of pre-
dicted probabilities reflected expected presence or absences in the
training and testing region, respectively (SS>0). Lower skill compared
to calibration resulted from overprediction of occurrence in expected
low probability areas (Fig. 4a, g). Observed probability trends resulted
in the overall bias of 0.194-0.09 and 0.224-0.10 (mean =+ SD) in training
and testing regions, respectively. This observed error was comparable to
that indicated by forecast accuracy and refinement (Table S7). Overall,
probability predictions were marginally useful at best (Fig. S2). Proba-
bility predictions were overfit to the training data with minimal differ-
ences exhibiting improved calibration, less error, and improved
separation of values in the training region. However, the testing region
indicated more skill owing to a higher proportion of species absence
(Table S7).

Probability of occurrences was best estimated from centroids with
equal or double pseudo-absences by 76% of algorithms (Fig. S4a). Pre-
dictor selection required to account for centroids was less consistent,
with 40%, 36%, and 24% of algorithms requiring automated, a priori,
and expert predictors, respectively. Across all SDMs, occurrence prob-
ability was best estimated by original generalized regression boosting
methods with equal pseudo-absences and automated predictors
(Table 3). Excellent occurrence probabilities were also generated by
mean and weighted mean ensembles with double pseudo-absences and
automated predictors. The least reliable probabilities were provided by
neural networks and envelope models (Fig. S4a).

Table 3

Recommended methodology per objective. Overall objectives represent the
relative performance for all corresponding objectives. Full relative performances
are available in Supplementary material: Table S7.

Objective Algorithm Pseudo- Predictor
absences selection

Explanation

Identification of ecologically GAM_O 10,000 -

important predictors
Response curve estimation GBM_O 1:1 Automated
Overall GLM_B 1:1 Automated or
expert

Prediction

Probability of occurrence GBM_O 1:1 Automated

Presence-absence map EMwmean B 1:1 Automated

Overall GBM_O 1:1 Automated

Explanation and prediction

Overall GBM_O 1:1 Automated
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3.4. Presence-absence map

Discrimination of presence-absence from centroids exhibited over-
and under-prediction of species’ presence, depending on region and
model building considerations (Fig. 4b, d, f, h). For example, boundaries
with a high-density of species presence were predominantly correctly
classified but also overpredicted within Mexico and along the U.S.-
Mexico border (Precision: 0.5 + 0.22; F1: 0.624+0.18; mean + SD,
Fig. 4d, F). Extending classification outside of the training area observed
either low detection of species presence or high overprediction (Preci-
sion: 0.1940.13; F1: 0.2140.1; mean =+ SD, Fig. 4f, h). Boundaries with
a low density of species presence were under-predicted and misclassified
as absent within both regions (Fig. 4d, F) unless presence was vastly
over-predicted across arctic and coastal boundaries (Fig. 4h). As a result,
extrapolation of centroid-trained SDMs generally observed improved
classification of species absence (Specificity: 0.69+0.14; mean + SD)
over presence (Sensitivity: 0.55+0.12; mean + SD). Overall SDMs could
only provide moderately accurate discriminations of presence or

B Expected presence “
i Predicted presence
DPredicted absence
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Fig. 4. Predicted probability of occur-
rence and binary presence-absence
maps compared to expected. Maps
correspond to expected probability of
occuirence (a), true presence-absence
(b). An example of excellent relative
performance by GBM_ O at 1:1 with
automated predictors’ predicted proba-
bility of occurrence(c) and binary pre-
diction (d). An example of an average
relative performance by GLM B with
10,000 pseudo-absences and a priori
predictors’ probability of occurrence (e)
and binary prediction (f). An example of
poor relative performance predictions
by ANN_O with 10,000 pseudo-absences
and automated predictors’ probability
of occurrence (g) and binary prediction
(h). See Table 2 for algorithm
abbreviations.

absence within both training and testing regions (CCR: 0.68+0.15 and
0.69+0.14, respectively, mean + SD). Further, 86% of SDMs provided
better than random discrimination. Accordingly, minimal difference
between regions indicated SDMs were overfitted to the centroids, with
lower discrimination of presences in the testing region compared to
absences (Table S7).

Discrimination from centroids improved when considering equal or
double pseudo-absences to centroids for 87% of algorithms (Fig. S4b).
Prediction selection considerations were less consistent, with 37%, 34%,
and 29% of algorithms requiring automated, a priori, and expert pre-
dictors, respectively. The relative performance indicated the most reli-
able discrimination was obtained with weighted mean ensembles with
equal pseudo-absences to centroids, and automated predictors (Table 3).
Non-weighted mean ensembles and original generalized additive models
under the same model building considerations also provided excellent
discrimination. Poorest discrimination ability was provided by enve-
lope, committee average ensembles, and neural networks models
(Fig. S4b).
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3.5. Explanation and prediction

The ability of centroids to reliably provide explanations was best
achieved by generalized linear models from biomod2 with equal
pseudo-absences to centroids to identify predictors and then estimate
response curves. Envelope and machine learning methods tended to
provide the least reliable explanations (Fig. S3c). Overall predictive
ability improved relative to other methodologies when boosting or non-
commiittee average ensemble methods with automated predictors and
equal pseudo-absences were considered. Neural networks and envelope
models provided the poorest predictions (Fig. S4c).

Overall, optimization of all SDM objectives from centroids required
automated predictor selection regardless of pseudo-absences for 44% of
algorithms (Fig. 5). Alternatively, application of expert predictors or a
priori with triple or fewer pseudo-absences to centroids was required for
38% and 10% of algorithms, respectively (Fig. S5). Relative perfor-
mance across all metrics indicated that original generalized boosting
regression methods followed by mean, median, or weighted mean en-
sembles with equal centroids and pseudo-absences and automated

Relative performance

N ]
Poor Fair Average Good Excellent
ANN_B 1

ANN_O 1
CTA_B1
CTA_O+
EMca_B
EMmean_B 1
EMmedian_B 1
EMwmean_B 1
FDA_B 1
FDA_O
GAM_B 1
GAM_O 1
GBM_B 1
GBM_O
GLM_B
GLM_O
MARS_B 1
MARS_O 1
MaxEnt B{
MaxEnt_O 1
MXL_O 1
RF_B 1
RF_O
SRE_B
SRE_O
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Fig. 5. Overall relative performance between all considered algorithm, pseudo-
absences, and predictor selection considering niche explanation and prediction
accuracy. A breakdown of relative performance is available in Supplementary
materials: Figs. S3-5. See Table 2 for SDM abbreviations.
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predictor selection provided the most reliable conclusions to explain and
predict a distribution (Fig. 5). Meanwhile, remaining regression
methods provided excellent or good relative performance. Machine
learning methods exhibited average to poor relative performance.
Finally, poor performance was provided by both envelope methods and
committee average ensembles (Fig. S5).

4. Discussion

SDMs are the most common method to aid management of specific
species. Models can be built from different algorithms, predictors, and
quantities of response variables, whose conclusions vary in reliability
depending on the objective and precision of the response variable. In
this study, we observed that it is possible to determine appropriate
conclusions from centroids if one constructs an SDM carefully consid-
ering the methods used, particularly algorithms. Specifically, general-
ized boosting regression methods (GBMs) followed by mean or weighted
mean ensembles provided the most accurate conclusions across objec-
tives. Previous research highlighted GBMs as high-performing (Elith
et al, 2006; Wisz et al., 2008; Heikkinen et al., 2012) or
moderately-performing (Aguirre-Gutiérrez et al., 2013; Breiner et al.,
2018) choices. Their strength comes from using an iterative mean
ensemble of the boosting and regression-tree algorithms to emphasize
previously misidentified training responses (Elith et al., 2008; Shirley
et al., 2013). Consequently, GBMs are adept at interpreting non-linear
responses, removing of non-contributing predictors, fitting multiple in-
teractions, accounting for interactions, outliers, and collinearity, and
analyzing and interpreting complex responses (Elith et al., 2008; Yu
et al., 2020). Notably, GBMs can interpret imprecise occurrences (Gra-
ham et al., 2008; Naimi et al., 2011; Bombi and D’Amen, 2012) and are
less affected by coarsening of scale (Aguirre-Gutiérrez et al., 2013).
Though GBMs have been criticized for their tendency to overfit and
produce an unreasonable probability of occurrences (Becker et al.,
2020), we did not observe that here (Table S7).

Similarly, mean or weighted mean ensembles also tended to provide
high relative performance across all objectives (Fig. 5). These methods
could predict appropriate presence-absence maps while also identifying
ecologically important predictors and maintaining excellent probability
of occurrence predictions. Ensembles benefit from considering multiple
algorithms to highlight areas of agreement. The exceptional predictive
ability of ensembles stems from presence predictions that are strictly
limited to cells for which the majority of SDMs agree (Aguirre-Gutiérrez
et al., 2013). Additionally, as all SDMs were able to identify at least two
of three ecologically important predictors, ensembles were able to assign
lower contributions to non- ecologically important predictors. Ensemble
methods have risen in popularity to account for variation among algo-
rithms (Aratijo and New, 2007). Hao et al. (2019) compared ensemble to
singular methods and found the former were the best or nearly
best-performing in most studies. Though ensemble methods can be
improved with more careful fine-tuning and consideration of algorithms
included as opposed to a sensitivity threshold applied here.

The recommended use of GBMs or ensembles contrasts previous SDM
mosquito comparisons, which suggested that MaxEnt, generalized linear
models (GLMs), or random forests provided the highest performance in
the Bermuda Islands and global predictions (Khatchikian et al., 2011;
Ding et al., 2018). However, Khatchikian et al. (2011) evaluated against
precise occurrences and did not consider GBMs or ensembles. Mean-
while, Ding et al. (2018) considered GBMs but evaluated SDMs without
independent data. More mosquito distribution publications to date have
relied on MaxEnt owing to its perceived flexibility and high performance
(Merow et al., 2013). However, we observed only average relative
performance of MaxEnt overall (Fig. 5). MaxEnt estimates the proba-
bility of occurrence by determining the stable equilibrium state of pa-
rameters with the highest entropy (Phillips et al., 2006; Phillips and
Dudik, 2008; Booth et al., 2014). MaxEnt’s consideration of centroids
reduced environmental heterogeneity and thus incorrectly indicated
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stable equilibrium from MAUP and degraded performance (Bombi and
D’Amen, 2012). As a result, the performance of MaxEnt was reduced at
coarser scales, while the GBMs were not. GBMs have consistently indi-
cated comparable or better performance than MaxEnt with coarse scales
(Guisan et al., 2007b; Graham et al., 2008). Bombi and D’Amen (2012)
indicated no hindrance to GBM predictive performance until a 24-fold
change from the suspected true ecological scale. Guisan et al. (2007a)
demonstrated MaxEnt performance decreased compared to GBM at a
minimal 10-fold scale increase. Further, other machine learning SDMs
are generally considered to provide more reliable results (Elith et al.,
2006; Lawler et al., 2006). The assumption of machine learning supe-
riority may be driven by interpolative evaluation, instead of the full
diagnostic evaluation conducted here. Machine learning methods may
require more attention to fine-tuning hyper-parameterizations to ensure
reliable conclusions than was considered here (Aratijo et al., 2019). This
suggests that despite MaxEnt and other machine learning methods’ hold
on the SDM literature, its use in applications where coarse scales and
MAUP are of concern is ill-advised without fine-tuning and independent
evaluation.

Further model building considerations indicated algorithm- and
objective-specific effects, with no pattern observed across algorithms,
which is consistent with previous studies (Synes and Osborne, 2011;
Barbet-Massin et al., 2012; Heikkinen et al., 2012). These results further
support the need to determine SDM methodology for the available data
and objective, instead of on commonly applied algorithms (Aguirre-—-
Gutiérrez et al., 2013).

4.1. Identification of ecologically important predictors

Overall, predictor identification was poor. These results corroborate
the findings of Inman et al. (2021). They tested MaxEnt’s ability to
identify the ecologically important predictors and observed correct
identification by only 3% of SDMs with aggregation corrected bias
(Inman et al., 2021). The scale changing inhibited predictor identifica-
tion as drivers of distribution change with scale (Hortal et al., 2010). The
difference in scale alters the spatial autocorrelation and heterogeneity
within each predictor. Accordingly, SDMs appeared to only select pre-
dictors with higher spatial autocorrelation or heterogeneity (Fig. S6).
Increased heterogeneity and spatial autocorrelation inflate predictor
importance, particularly when a distribution is driven by multiple pre-
dictors (Connor et al., 2018; Smith and Santos, 2020). This suggests
ecologically important predictors identified by SDMs trained with cen-
troids can approximate appropriate ecologically important predictors by
indicating predictors demonstrating spatial autocorrelation and het-
erogeneity at the provided scale. These findings may be limited to the
predictor identification method applied. Harisena et al. (2021) detailed
the predictor importance assessment used here, which is sensitive to
spatial autocorrelation, pseudo-replication, and truncated responses.
Another predictor importance assessment or selection threshold may
improve predictor identification with centroids (Synes and Osborne,
2011; Harisena et al., 2021).

Consistent predictor identification required generalized additive
models (GAMs) with 10,000 pseudo-absences. Predictor identification
was driven more by the algorithm than the pseudo-absence level. Smith
and Santos (2020) evaluated the effects of sample size, scale, and
collinearity on GAMs and MaxEnt to determine predictor contribution.
They concluded that small sample sizes and coarse scales inhibited
predictor identification, but the algorithm was the greater indicator of
identification success. Specifically, large sample sizes provided the best
identification, but MaxEnt was more affected by coarse scales (Smith
and Santos, 2020). Therefore, our findings partially agree with Smith
and Santos (2020). The smallest sample size considered here was larger
than Smith and Santos (2020)’s largest, thus potentially explaining the
variation in the pseudo-absence number effect. This suggests that
though larger sample sizes are better, some algorithms have upper and
lower sample size thresholds for predictor identification (Fig. 2).
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Further, Aguirre-Gutiérrez et al. (2013) indicated only high variability
of GAM’s variable contribution measures. This is further supported by a
decreased predictor selection ability of GAM at lower pseudo-absence
levels (Fig. 2). Therefore, GAM’s predictor identification may not be
reflected when fewer centroids are available (Smith and Santos, 2020).

4.2. Response curve estimation

Aggregation caused truncated species response curves, thus
increasing niche width only capturing general trends. This finding
supports previous observations that mismatched scales inhibit species
response detection (Azaele et al., 2012; Aratijo and Rozenfeld, 2014).
Change in scale is known to alter the shape of responses from linear to
asymmetric or skewed curves owing to MAUP (Rydgren et al., 2003;
Lechner et al., 2012). As the scale coarsens, heterogeneity is increasingly
masked, thus limited the estimated response (Wiens, 1989). However,
regardless of response imprecision, Guisan and Zimmermann (2000)
described that SDMs are not expected to provide realistic responses, nor
to inform about their underlying mechanisms. Instead, one should
consider if the response curve trend was biologically possible and not
overly complex (Jarnevich et al., 2015). Accordingly, correlative SDMs
should only be expected to capture the general positive or negative
response validated against physiological studies. Here, SDMs captured
the expected positive or negative trends, indicating appropriate realism
for an SDM. However, overestimating niche breadth suggests that cen-
troids are unsuitable for transfering beyond the training extent (Thuiller
et al., 2004; Manzoor et al., 2018). Future studies may improve niche
estimation by considering accounting for uncertainty within predictors,
such as standard error or considering additional aggregates (i.e. min,
max, median), considering pseudo-absences from a more restrictive
range, or only investigating univariate model responses (Thuiller et al.,
2004; Winters et al., 2008; Santika and Hutchinson, 2009; Stoklosa
et al., 2015).

Across SDMs, we identified GLMs with expert or successful auto-
mated identification and equal pseudo-absences to centroids provided
the best explanation. This finding is contrary to previous studies, which
suggested that GLMs were inferior to other algorithms such as GAM or
GBM for response estimation (Santika and Hutchinson, 2009). This
inconsistency may be due to previous GLMs considering only linear re-
sponses while we considered a higher-order approach. Higher-order
approaches are recommended to provide increased flexibility to fit
complex responses (Segurado et al., 2006; Dormann et al., 2007).
Further, explanation was best estimated for most algorithms when
considering expert predictors and high numbers of pseudo-absences.
The requirement of expert predictors for proper explanation
re-enforces the recommendation building SDMs with only predictors
that are well supported (Aratijo et al., 2019).

4.3. Probability of occurrence

Predictions of virtual species generally improved when considered
with equal pseudo-absences and automated predictor selection. Coarse
scales increase the probability of false absences. Thus more pseudo-
absences bias SDMs to consider more potentially suitable habitats as
unsuitable (McPherson et al., 2006). In this study, the 1414 centroids
limited pseudo-absences to a maximum of 1761 unique environmental
conditions. Therefore, consideration of equal pseudo-absences to cen-
troids provided the least bias training relative to other pseudo-absence
levels investigated, supported by previous studies (Moffett et al.,
2007; Phillips and Dudik, 2008; Liu et al., 2018). For example, Johnson
et al. (2017) indicated that discrimination of A. albopictus centroids
improved when considering equal background points to centroids.
However, A. aegypti, which had fewer occurrence records, improved
with double pseudo-absences (Johnson et al., 2017). This suggests the
number of pseudo-absences required varies based on the number of
responses available and unique environmental conditions.
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Automated selection of predictors generally allowed for more accu-
rate spatial conclusions. Accounting for the imprecision of centroids
fundamentally alters how the responses and resulting distributions are
interpreted (Levin, 1992). While the effect of one factor may be prom-
inent at a fine scale, its effect may be negligible at another (Schweiger
and Beierkuhnlein, 2016). Hortal et al. (2010) described how as scale
coarsens, the impact of biotic factors on insect distribution decreases,
and abiotic factors’ effects increase. Mouton et al. (2009) suggested that
data-driven SDMs, such as automated predictors, outperformed expert
models as predictors were selected based on the available scale, thus
providing a more reliable interpretation. Therefore, automated predic-
tor selection estimates ecologically important predictors at the provided
scale to better represent the responses at the observed over expected
responses.

The overall probability of occurrence predictions was only moder-
ately accurate with low generality suggesting marginal usefulness in
application. Some studies suggest that lower degrees of scale coarsening
preserved environmental characteristics (Guisan et al., 2007b; Trivedi
et al., 2008; Bombi and D’Amen, 2012), but generally, scale coarsening
decreased SDM predictive performance (Rahbek and Graves, 2001;
Thompson and McGarigal, 2002; Guisan et al., 2007a; Seo et al., 2009;
Mertes and Jetz, 2018). The degree of scale coarsening observed in this
study (Table S2) did not reflect those of the lower degree previously
described (<10 km?) and therefore supported decreased performance at
coarse scales. Our observed performance reflected a greater decrease in
predictive ability than in previous centroid applications. Johnson et al.
(2017) applied centroids of A. aegypti and A. albopictus across the
contiguous U.S. counties and observed good area under the receiver
operating characteristic curve scores but without independent valida-
tion. Similarly, Collins et al. (2017) compared SDMs trained with precise
or centroids occurrences to investigate the degree of bias introduced for
butterfly, dragonfly, and damselfly species in the contiguous U.S.
counties. Niche similarity metrics indicated centroids only somewhat
compromised predictions, with the effect more pronounced in larger and
environmentally heterogenous counties which could not be accounted
for by boundary scale (Collins et al., 2017). One possible explanation for
decreased degradation in our study is that all previous studies investi-
gated administrative regions within a single country. In contrast, we
applied centroid occurrences across administrative regions of three
countries. Consequently, across-country considerations resulted in a
more considerable variation in size and shape of boundaries, thereby
leading to greater uncertainty and instability of predictors by MAUP
(Openshaw, 1984). Specifically, larger and more heterogeneous
administrative regions introduced greater predictor uncertainty, namely
boundaries in the western U.S. or Canada (Collins et al., 2017; Cheng
et al., 2021).

4.4. Presence-absence map

Prediction of species’ presence or absence tended to over-predict
presence with some cases of under-prediction, depending on the meth-
odology. Methodology considerations for species presence or absence
predictions followed the patterns described previously. Presence-
absence maps require further review of the threshold considered.
Threshold selection is one of many possible sources of bias in SDMs
(Bean et al., 2012). In this study, we applied a minimum presence
threshold (Fig. 4b). Yet, in practice, threshold selection should be
considered relative to the desired SDM application and the importance
of omission and commission errors (Liu et al., 2013). Alternatively,
thresholds derived from the maximization of the sum between sensi-
tivity and specificity or minimization of the difference between sensi-
tivity and specificity are generally seen as superior to others, or authors
may examine an overlay of different thresholds to determine suitable
areas (Liu et al., 2005; Jiménez-Valverde and Lobo, 2007). To our
knowledge, no studies have investigated the effect of binary threshold
choice associated with MAUP or administrative/geopolitical boundary
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centroids.
4.5. Implications

Management of mosquito populations often focuses on chemical or
biological agents to limit of reproduction and spread. Yet, these man-
agement practices require fine-scale and precise predictions to be
effective, which are not captured using centroids (Fouet and Kamdem,
2019; Pascoe et al., 2019). Our results indicated the prediction of only
administrative regions at the highest risk of establishment while mis-
classifying lower density of true occurrence sites. This suggested that
with very careful consideration of SDM methods, centroids can be used
to predict boundaries at the highest risk of arthropod vector establish-
ment, if sufficient propagules are introduced in new boundaries. These
corresponding boundaries would be encouraged to enact public educa-
tion campaigns and increase vector surveillance. However, SDMs
consistently missed lower risk areas which may indicate early detection.
This highlighted the loss of environmental detail with the use of cen-
troids. Therefore, the corresponding SDMs are unsuitable for estimating
regions with isolated risks such as micro-niches. Further investigations
on a local scale or with more precise requirements would be required to
provide management applications. Additional or alternative methods
may accomplish this may be necessary to provide reliable conclusions
from centroids by applying mixed-effect models (Hamil et al., 2016),
Bayesian (Velasquez-Tibata et al., 2016), integration methods (Collins
et al., 2017; Pacifici et al., 2019) or considering movement and biotic
factors in addition to abiotic (Soberon and Peterson, 2005).

Centroid responses and resulting ecologically insignificant scales in
SDMs are not limited to A. aegypti and A. albopictus. Approximately half
of the occurrences from species of all major taxonomic groups are
limited to centroids in occurrence repositories in the U.S. (Park and
Davis, 2017). The results of this study provide guidance to improve
centroid application in SDMs, but not conclusive guidelines. Virtual
species ensure SDM assumptions are met, including that occurrence
records are precise, entire geographic and environmental extent are
sampled without bias, species are at equilibrium, and they provide a
known truth for evaluation (Guisan and Zimmermann, 2000).

Conversely, using a virtual species may bias the results, as it gives a
simplified distribution based on limited environmental conditions
without movement or biotic impacts. The results here reflect the ability
of SDMs to determine appropriate ecologically important predictors,
estimate responses, predict probability and presence only if the species
responses are based on a combination of B, logistic, and linear responses.
We selected these responses to ensure ecological realism given ecolog-
ical and physiological studies of A. aegypti and A. albopictus. Considering
linear and non-linear responses limited potentially bias towards a
particular analysis (Hirzel et al., 2001). Other responses may not
observe the same results, thus re-enforcing the need to test models for
the given data and objective. For example, many regression and
tree-based SDMs poorly model linear responses, as the logit-link and
grouping strategies are non-linear and represent a threshold response
(Meynard and Quinn, 2007).

Additionally, we defined the virtual species from a multiplicative
formula. Yet, we trained SDMs with additive formulas. This allowed for
the interaction of environmental conditions on species occurrence while
maintaining common practice in SDMs, as shown by the default settings
of an additive formula for most SDMs (Elith et al., 2006; Meynard and
Quinn, 2007). Meynard and Quinn (2007) examined SDM discrimina-
tion ability of virtual species determined by additive and multiplicative
habitat suitability indexes. They found that additive and multiplicative
training followed similar performance patterns but varied depending on
the evaluation metric. Future SDM investigations of centroids may
contrast our findings if trained with multiplicative rather than additive
formulas. Therefore, one major limitation was considering a single vir-
tual species across SDMs, as additional virtual species would allow more
variation in the known habitat suitability. Additionally, it is important
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to note we examined all SDMs under default settings. Default settings
may have improved the performance of one SDM over another. For
example, the default interaction depth of GBMs and multiple adaptive
regression splines have a default interaction depth of seven and zero,
respectively. Further, default settings allowed GBMs to have greater
maximum number of trees and minimal number of observations per
node than random forest and classification tree (Table S3). These would
allow GBMs to resemble the original multiplicative suitability index
more closely, as well as a greater ability to determine the differentiate
between environmental condition importance, presence, and absence. If
all algorithms were fine-tuned to the provided data, we may have
observed different results (Merow et al., 2013; Aradjo et al., 2019).
Future work is required to determine if our results hold across taxo-
nomic groups.
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