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Abstract Predicting dispersal of nonindigenous

species (NIS) is an essential component of risk

analysis and management, as preventative measures

are most readily applied at this stage of the invasion

sequence. Gravity models provide one of the most

useful techniques available to model dispersal of

nonindigenous invasive species (NIS) across hetero-

geneous landscapes, as these models are able to

capture transport patterns of recreational boaters who

are dominant vectors responsible for aquatic NIS

dispersal. Despite the widespread use of gravity

models in forecasting biological invasions, different

classes of gravity models have not been evaluated

regarding their comparative ability to capture recre-

ational transport patterns and subsequent use in

predicting NIS establishment. Here we evaluate

model selection between unconstrained, total-flow-

constrained, production-constrained and doubly-con-

strained stochastic gravity models to assess dispersal

of the spiny waterflea Bythotrephes between Ontario

lakes. Differences between the models relate to the

amount of data required and constraints under which

calculations of source/destination interactions are

made. For each class of gravity model, we then

estimated the probability of a lake having established

Bythotrephes populations by modeling the relation-

ship between empirical presence/absence data and

inbound recreational traffic (i.e. propagule pressure)

via boosted regression. The unconstrained gravity

model provided the best fit to observed traffic patterns

of recreational boaters. However, when output from

the gravity models was used to predict Bythotrephes

establishment, the doubly-constrained gravity model

provided the strongest relationship between inbound

recreational traffic and observed Bythotrephes pres-

ence/absence, followed by the production-constrained

model. Our results indicate production-constrained

gravity models offer an acceptable balance between

modeling recreational boater traffic and their utility to

estimate establishment probabilities.

Keywords Nonindigenous species � Invasive

species � Biological invasion �
Stochastic gravity model

Introduction

The global spread of nonindigenous species (NIS) has

become a leading environmental issue owing both to

the frequency of species introductions and to their
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profound consequences in some invaded ecosystems

(Sala et al. 2000; Davis 2003). Slowing the rate of

new invasions requires development of risk assess-

ment and management policies. The first step of risk

assessment models is the determination of where NIS

are expected to colonize and spread. A major

challenge in developing these forecasts lies in

tradeoffs between selection of competing risk assess-

ment models, the amount of information required to

parameterize these models, and their predictive

accuracy. Once accurate forecasts have been devel-

oped based on an optimal modeling framework, risk

management policies may be developed to reduce

rates of spread and establishment. Specifically, fore-

casts of NIS dispersal that are developed using a

process-based or mechanistic approach of NIS trans-

port may be used in risk management to identify

putative control measures.

Stage-based invasion models are an important

advancement to efforts to predict successful invasions

because they logically examine factors affecting

success at each step of the invasion process (see

Richardson et al. 2000; Kolar and Lodge 2002;

Vander Zanden and Olden 2008). Stage-based models

begin with quantifying the introduction effort or

‘propagule pressure’ (i.e. the number of introduction

events, and the number and quality of individuals per

event) from source populations (Richardson et al.

2000; Kolar and Lodge 2001; Colautti et al. 2006;

Lockwood et al. 2009). Upon arrival at a new site,

propagules of a NIS must tolerate or exploit ambient

environmental conditions (Rouget and Richardson

2003; Hayes and Barry 2008; Herborg et al. 2007;

Melbourne et al. 2007). Finally, the surviving prop-

agules must integrate into the community, with

possible positive, negative or neutral effects by native

residents (Fridley et al. 2007).

There exists considerable evidence that increased

propagule pressure is a key determinant of invasion

success (Veltman et al. 1996; Forsyth and Duncan

2001; Lockwood et al. 2005; Von Holle and

Simberloff 2005; Colautti et al. 2006). Many of these

studies derive from biological control, fisheries, bird

or mammal introductions (e.g. Jeschke and Strayer

2005). However, the relationship between propagule

pressure and the likelihood of a successful invasion is

not always straightforward. For example, Lockwood

et al. (2005) argued that the location of the introduc-

tion event and the composition of the recipient

community may interact to alter the relationship

between propagule pressure and invasion success.

Gravity models provide an ideal framework to

assess human-mediated dispersal of NIS, as they can

be used to model movement patterns of vectors and

associated propagules of NIS between discrete sys-

tems. Initially developed for use in describing

immigration patterns (Zipf 1946), flows of economic

goods (Linneman 1966), and optimal placement of

retail services (Huff 1959), gravity models describe

the flow of information between spatially-discrete

origins and destinations. The flow from origin to

destination is affected by the distance between them,

by the amount of outflow and extrinsic ‘propulsive-

ness’ from each origin, and by the amount of inflow

and ‘attractiveness’ of different destinations.

Gravity models can be distinguished into five main

classes depending on the amount of information

available and the interaction flow constraints assumed

between origins and destinations. Unconstrained

models require the least amount of data to construct,

only measures of destination attractiveness and

distance between origins and destinations. Total-

flow-constrained models require data on only total

flow within the system, measures of origin propul-

siveness, and destination attractiveness (Haynes and

Fotheringham 1984). Production-constrained models

require only moderate amounts of effort to collect

data, including measures of outflow from origins and

measures of destination attractiveness. Production-

constrained models have been used to forecast

dispersal of NIS into unknown destinations (Leung

et al. 2004, 2006; Bossenbroek et al. 2001, 2007).

Doubly-constrained gravity models require informa-

tion about both outflows from origins and inflows to

destinations and have also been used to forecast

spread of aquatic invaders (Schneider et al. 1998;

MacIsaac et al. 2004). Finally, attraction-constrained

gravity models provide the same information as

doubly-constrained models with respect to inflows to

each destination and we do not deal with this class of

model further.

Although the models used to forecast NIS dis-

persal considered the flow between sources and

destinations as a deterministic value, stochastic

versions of gravity models treat the flow between

sources and destinations as a random variable

described by a statistical distribution. That is, the

data collected on origin–destination flows is treated
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as a single realization of an underlying stochastic

process governing trip distribution. Stochastic gravity

models have been used frequently in economic and

transportation studies (e.g. Flowerdew and Aitkin

1982, Anas 1983), but their use is not widespread in

the ecological literature (although see Potapov et al.

2010).

Since it was reported in the Laurentian Great

Lakes in the early 1980’s, Bythotrephes longimanus

has spread to more than 150 inland lakes throughout

the province of Ontario (Johannsson et al. 1991;

MacIsaac et al. 2004; N. Yan, pers. comm.). In

addition to advective dispersal through connected

waterways, Bythotrephes dispersal between lakes is

facilitated by human-mediated transport associated

with recreational boating and fishing (Boudreau and

Yan 2004; MacIsaac et al. 2004; Branstrator et al.

2006). One of the key life-history traits that may

facilitate Bythotrephes’ rapid range expansion is its

production of diapausing or resting eggs. These

sexually-produced, diploid eggs remain viable after

passage through fish gastrointestinal tracts (Jarnagin

et al. 2000), and may survive overland transport

(Ketelaars and Gille 1994). If the fishing gear is

subsequently used on another lake without cleaning,

dried masses of females and resting eggs may fall off

the line; viable resting eggs could then hatch and

cause a new invasion. Bythotrephes may also be

introduced to new lakes in transported water, recre-

ational or scientific gear, or in transplanted fish.

In this study, we evaluate model selection between

unconstrained, total-flow, production- and doubly-

constrained stochastic gravity models to describe the

pattern of recreational movement among Ontario lakes

as a proxy for Bythotrephes dispersal. We then relate

inbound recreational traffic as a measure of propagule

pressure to observed Bythotrephes occurrences via

boosted regression establishment models to illustrate

tradeoffs in gravity model choice affecting the ability

to fit recreational data versus predicting invasion

outcomes. Finally, we make recommendations about

gravity model choice based on management goals and

the effort required to collect the necessary data.

Materials and methods

To implement a two-stage conceptual model of the

invasion sequence, we have modeled Bythotrephes

dispersal as a submodel nested within a model

estimating the probability of establishment for a

given lake. First, we modeled recreational traffic of

trailered boats travelling among lakes with different

classes of gravity models as a proxy for Bythotrephes

dispersal. We then estimated the mean number of

trips predicted to arrive at a series of lakes within a

single boating season as a measure of propagule

pressure, and modeled the relationship between

propagule pressure and Bythotrephes presence/

absence with boosted regression trees to determine

probability of establishment.

Data collection

We mailed 10,000 surveys in July 2004 to owners of

fishing licenses registered with the Ontario Ministry

of Natural Resources to assess movement patterns of

recreationalists within the province. Approximately

218 surveys were sent to households in each of 46

zones based on the first two digits of their postal

code, thereby minimizing bias due to differences in

population density across the province. Overall

response rate for returned surveys was 7.8%. From

the surveys, we were able to collect data on 1,576

pairwise recreational trips made between 15 May

2004 and 7 September 2004 between 49 invaded

origin lakes i and 191 invaded and non-invaded

destination lakes j. Since we were interested in

transient recreationalist movement, we excluded data

where recreationalists only visited a single lake and

recorded trips only where the origin and destination

lakes were different (i = j).

Dispersal models

Stochastic gravity models

To model recreational boat movement between lake

pairs i and j, the expected (i.e. mean) number of trips

can be built using different classes of gravity model

depending on model constraints and data require-

ments for model parameterization and extrapolation

of pairwise trips from invaded origins to additional

destinations. Although it is not a condition of gravity

model use for modeling aquatic NIS dispersal, we

specifically used lakes pairs to examine the effect of

increasing model constraints on estimated boater
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movement. Unlike Random Utility Models that

address individual trip behaviour to competing des-

tinations (e.g. Bockstael et al. 1989), gravity models

are zonal aggregate models and are suitable for

comparing relative numbers of trips between origins

and destinations over a single boating season. Hence,

we are not considering individual multi-trip move-

ment such as trips from their house to each of the

lakes, although additional models describing each leg

of a multi-trip movement may be used (Bossenbroek

et al. 2001; Leung et al. 2004.)

We modeled the number of recreational trips

between origin and destination pairs as a random

(stochastic) variable with error, in contrast to deter-

ministic gravity models used to model biological

invasions that have a fixed number of trips calculated

as a function of model inputs (e.g. Bossenbroek et al.

2001; Leung et al. 2006). For the gravity models, we

assume that the mean number of Bythotrephes

individuals transported per trip is the same for each

trip, and that propagule pressure of Bythotrephes

scales with the mean number of trips arriving at the

lake. In addition, we are making the simplifying

assumption that the mean number of Bythotrephes

individuals per trip is the same regardless of its

population size in the origin lake.

Gravity model classes

A generalized gravity model describing the number

of trips between lakes i and j can be modeled as a

function of observed trips leaving lake i (Oi) or

arriving at lake j (Dj), measures of destination

‘‘attractiveness’’ (wj), and road distance between

lakes i and j (d
�b1

ij ):

l̂ij ¼ cOiDjwjd
�b1

ij : ð1Þ

Here, c can be one or more fitted constants or

‘‘balancing factors’’ to ensure that the total number of

expected trips, leaving lake i or arriving at lake j are

constrained to equal to observed numbers of trips for

different classes of gravity model (discussed below).

Destination attractiveness is described by wj ¼
eb2 log10 ðaj þ 1Þ, in which aj is the destination lake

area (hectares). Parameters b1 and b2 are fitted during

maximum likelihood estimation, and eb2 ensures that

lake attractivity is constrained from 0 to ?.

Gravity model classes

Depending on the type of information available on

outbound or inbound traffic, and various constraints

on under which to estimate traffic between origins

and destinations, the general form of the gravity

model may be modified into different classes.

The unconstrained gravity model requires the least

amount of information to estimate pairwise traffic—

only an external measure of destination lake attrac-

tiveness, wj, and the expected number of pairwise

trips is not under constraint. Here, the generalized

model is reduced to:

l̂ij ¼ wjd
�b1

ij ð2Þ

For this class of gravity model, extrapolation to

other destinations requires data on only lake area and

the road distance between origins and new

destinations.

The total-flow-constrained model requires infor-

mation on the total number of pairwise trips in the

system and a measure of destination attractiveness.

Expected flow between origins and destinations for

the total-flow-constrained model is calculated as:

l̂ij ¼ cwjd
�b1

ij ð3Þ

where c is calculated as c ¼ T
.P

i

P
j wjd

�b1

ij to

ensure that the total of predicted flows,
P

i

P
j l̂ij, is

equal to observed total flow, T (Haynes and Fother-

ingham 1984). Destination attractiveness and road

distance is calculated as before in Eq. 1. In this

formulation of total-flow-constrained gravity model,

the term for origin ‘‘propulsiveness’’ was not

included (e.g. Haynes and Fotheringham 1984).

Similar to the unconstrained model, extrapolated

number of trips to lakes not in the data set based on

the total-flow constrained gravity model requires

measures of attractiveness and distance from origins.

Production-constrained gravity models require

additional information about the outflows from each

origin. Flows between origins and destinations are

calculated as:

l̂ij ¼ ciOiwjd
�b1

ij ð4Þ

where Oi is the observed number of trips leaving each

origin i and ci is a balancing factor for each origin,
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ci ¼
P

j wjd
�b1

ij

h i�1

, ensuring that total predicted

outflow from each origin is equal to observed outflowP
j l̂ij ¼ Oi

� �
(Haynes and Fotheringham 1984).

Propagule pressure forecast to additional lakes with

production-constrained models again requires mea-

sures of destination attractiveness and road distance

between origin and destinations.

In the doubly-constrained gravity model, predicted

total outflows for each origin and total inflows for

each destination are constrained to match observed

values. Here pairwise flow is formulated as:

l̂ij ¼ cicjOiDjd
�b1

ij ð5Þ

where Dj is the inflow to destination j, and other

terms are as previously defined. The parameters ci

and cj are balancing factors, ci ¼
P

j cjDjd
�b1

ij

h i�1

and cj ¼
P

i ciDid
�b1

ij

h i�1

, added to the model to

ensure that the sum of the interaction flow, l̂ij, for

each origin is equal to the total outflow, Oi, and

likewise, the sum of the interaction flow for each

destination is equal to the total inflow for each

destination, Dj (Haynes and Fotheringham 1984).

Unlike the three previous classes of gravity

models, the doubly-constrained model does not

require measures of destination attractiveness, wj. It

is, however, the most data intensive, as observed

outflows from each origin and inflows to each

destination are required for model parameterization.

Extrapolation to other destinations is not possible

because although information may be collected on

inflows to new destinations, Dj and road distances dij,

pairwise flows requires re-calculation of fitted param-

eters ci and cj.

For the purpose of model comparison in this

analysis, because the doubly-constrained gravity

model is limited to predicting inflow to destinations

for which there are observations, the total-flow and

production-constrained models were constrained to

the same set of destinations. Here, we make a

simplifying assumption that we had complete data

on the number of trips in the system in order to

calculate recreational traffic under gravity model

constraints.

Zero-inflated negative binomial distribution

For each class of gravity model, the expected number

of pairwise trips between lakes, l̂ij is modeled as a

random variable described by a zero-inflated negative

binomial distribution (ZINB). A ZINB distribution is a

frequently used to model situations where count data is

overdispersed and may contain an excess of zeros that

are either structural in nature or arise due to sparse

sampling effort. The observed number of pairwise trips

(Yij) is expected to follow a ZINB distribution with a

probability mass function:

where l̂ij is the expected traffic between lakes

for each of the gravity models (Eqs. 2–5) and is a

function of fitted parameters, b and c (Eqs. 1, 6a).

In this form, l̂ij and k are the mean and dispersion

parameter of the negative binomial (NB) distribu-

tion, and xij is a parameter that describes the

probability that only Yij = 0 can occur (i.e. zero-

inflation), and (1 - xij) the probability that

Yij�NB l̂ij; k
� �

is occurring. The probability of

zero-inflation was calculated from the logistic

equation:

log
xij

1� xij

� �
¼ c0 þ c1 log10ða:j þ 1Þ ð6aÞ

where a.j is destination lake area (in ha) and c0 and c1

are fitted parameters (Jansakul 2005).

Estimates for the fitted parameters b, c and k

were solved using maximum likelihood with an

Expectation-Maximization algorithm (Dempster

et al. 1977).

PrðYijjl̂ij;xij; kÞ ¼
xij þ 1� xij

� �
1þ l̂ij

�
k

� ��k
; Yij ¼ 0

1� xij

� � C Yijþ1=kð Þ
C 1þYijð ÞCð1=kÞ kl̂ij

	 
Yij 1þ kl̂ij

	 
� Yijþ1=kð Þ
; Yij ¼ 1; 2; 3; . . .; n

8<
: ð6Þ
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Model fitting comparison and confidence limits

Given the same baseline data set on the number of

pairwise trips, the four classes of gravity models were

evaluated using corrected Akaike Information Criteria

(AICc). Because maximum likelihood estimation

assuming ZINB requires estimating the components

for zero-inflation (x), the gravity model (b) and

dispersion (k) simultaneously, the AICc was calculated

as �2ðllmþ llzÞþ2pþð2pðpþ1Þ=ðn�p�1ÞÞ where

llm and llz are the log-likelihoods for the weighted

negative binomial (Eq. 6 for y [ 0) and zero-inflation

(Eq. 6a), respectively; p is the number of fitted

parameters, and n is the sample size. Confidence limits

for the fitted parameters were estimated by bias-

corrected bootstrapping data that were resampled

1,000 times (Efron and Tibshirani 1986).

Establishment model

Prior to establishment model development and val-

idation, destination lakes in the data set were

randomly divided 50:50 into model training and

testing subsets. Based on the training data only, the

probability of specific lakes having established pop-

ulations is determined by:

PðX ¼ 1Þ ¼ f l̂ij

� �
; ð7Þ

where the functional relationship between observed

Bythotrephes presence/absence (1,0) and the expected

number of inbound trips, l̂ij ¼
P

i ð1� xijÞl̂ij, is

determined by boosted regression trees. Boosted

regression trees use an iterative approach and do not

make any parametric assumptions about the relation-

ships between predictor variables and species occur-

rence. They have been shown to be strong performers

in predicting species occurrence and abundance relative

to other methods (Elith et al. 2006). To avoid over-fitting

the models, the optimum number of iterations for each

model was based on a stopping-rule at which there was

zero improvement (Ridgeway, G. 2007. gbm: General-

ized Boosted Regression Models. R package).

Finally, as boosted regression is a non-parametric

procedure, and maximum likelihood estimation is not

used to optimize the overall decision tree structure as

it would be for used in logistic regression, we

calculated 95% prediction intervals for probability of

establishment by incorporating variability in the fitted

parameters from the gravity model. Here, prediction

intervals were estimated by fitting two additional

boosted regression trees to estimates of the minimum

and maximum number of inbound trips determined

by 95% confidence limits of the fitted parameters of

the gravity models and raw data. These prediction

intervals allowed us to assess how variability in the fit

of gravity models to observed recreational traffic

influences the predictive ability of establishment

models based on the different gravity model classes.

Evaluating establishment predictions

The ability of the establishment models based on

each gravity model class to predict invasions were

validated by comparing each model’s probability of

occurrence derived from boosted regression trees to

observed Bythotrephes presence/absence data using

the testing data subset. Establishment models were

evaluated using Area under the Receiver Operating

Characteristic Curve (AUC) as well as measures of

concordance between model predictions and obser-

vations in 2 9 2 confusion tables. The AUC provides

a useful metric to validate whether the model is able

to detect a true signal (hit rate) from noise (false

alarm) across a range of probability thresholds. The

AUC metric has been widely used in evaluating

species distribution models (e.g. McPherson et al.

2004; Liu et al. 2005; Allouche et al. 2006; Elith

et al. 2006), but should be used with caution (Lobo

et al. 2008). In addition, a probability threshold

calculated from the proportion of lakes invaded by

Bythotrephes in the testing data set was used to classify

lakes to be predicted as invaded if the estimated

probability of establishment is greater or equal to this

threshold (s = 0.252). Hit rates, false alarm rates,

percent correct classifications and Cohen’s kappa (j)

were used to assess concordance between model

predictions and observed presence/absence based on

the threshold probability for establishment.

Results

Comparison of gravity model fits to recreational

traffic

Stochastic gravity models were greatly influenced by

the constraints under which the pairwise number of
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trips was estimated. Of the four classes of models, the

unconstrained model provided the best fit to observed

trip data as indicated by lowest AICc, followed by the

total-flow constrained, production-constrained and

finally doubly-constrained model (Table 1). Here,

large differences in AICc between the gravity model

types ([100) imply significant differences between

fits for each of the gravity model classes because

there is one fewer parameter needed to be estimated

in the doubly-constrained relative to the other types

of gravity models.

The use of the same baseline data set across

gravity model classes allows us to compare values of

the fitted parameters across models. Differences in

the fitted parameters associated with lake attractive-

ness, the effect of distance on the expected number of

trips, and the dispersion parameter followed trends

related to the level of gravity model constraint. The

relationship between lake area and destination attrac-

tiveness decreased in strength as model constraints

increased. For the unconstrained gravity model, lake

area was more than five times as influential in

determining lake attractiveness (wj) than the produc-

tion-constrained model as measured by the magnitude

of the fitted parameter b2 (Table 1). In contrast, the

strength of the relationship between gravity flow and

distance between origins and destinations (parameter

b1) was greatest for the doubly-constrained model

and negligible for the other gravity model classes

(Table 1). Next, as the level of constraint increased,

there was a marked decrease in the level of dispersion

used to describe the ZINB. For all four gravity model

classes, the dispersion parameter k was significantly

different from 0 as indicated by the 95% confidence

limits (Table 1). The use of a ZINB over other

commonly used trip distributions like Poisson is

therefore justified for this dataset. Finally, in terms of

the parameters fitted in the estimation of zero-

inflation, c0 and c1, differences in their values

between models were not significant.

Establishment model

The estimated inbound number of trips for both

invaded and noninvaded destinations decreased with

increasing constraints across gravity models (Fig. 1).

More importantly, differences in estimated inbound

number of trips arriving at invaded versus noninvad-

ed lakes varied between the four classes of gravity

Table 1 Summary of goodness of gravity model fit (corrected Akaike Information Criteria, AICc) and parameter estimates with

bootstrapped confidence intervals

Gravity model class AICc k b1 (distance) b2 (lake area, attractivity) c0 (zero-inflation) c1 (zero-inflation)

Unconstrained 1,2870 1.22

[1.200, 1.505]

-0.05

[-0.061, 0.123]

1.51

[1.222, 2.168]

2.71

[2.647, 3.066]

-0.08

[-0.083, -0.035]

Total-flow constrained 12,976 1.13

[1.076, 1.428]

-0.06

[-0.060, 0.115]

-1.61

[-1.597, -0.776]

2.71

[2.646, 2.955]

-0.08

[-0.089, -0.041]

Production-constrained 15,141 0.23

[0.186, 0.267]

-0.01

[-0.080, 0.126]

-0.11

[-0.211, 0.236]

2.71

[2.643, 3.132]

-0.08

[-0.090, -0.042]

Doubly-constrained 17,557 0.06

[0.047, 0.066]

-0.10

[-0.234, -0.055]

NA 2.70

[2.638, 3.010]

-0.08

[-0.093, -0.029]

Lake area was not considered in the doubly-constrained gravity model. Parameter k is the measure of dispersion for the ZINB (Eq. 5),

b1 corresponds to the distance decay component of gravity models (Eqs. 1–4), b2 corresponds to lake area in destination attractivity

(Eq. 1) and c0 and c1 are solved during estimation of zero-inflation (Eq. 6a)

Fig. 1 Estimated weighted inbound number of trips l̂j ¼Pn
i¼1 ð1� xijÞl̂ij to invaded and noninvaded lakes for four

classes of gravity models

Evaluation of stochastic gravity models 2451

123



models. Differences were negligible for the uncon-

strained and total-flow constrained gravity models,

but increased significantly for the production- and

doubly-constrained models (Fig. 1). As a result, the

strength in the relationship between establishment

probability based on presence/absence data also

varied widely between the four classes of gravity

models.

From the boosted regression, the doubly-con-

strained model exhibited the widest range of estab-

lishment probability at lower levels of propagule

pressure (Fig. 2). As propagule inflow was estimated

from gravity models having fewer constraints, the

relationship between establishment probability and

propagule pressure became weaker. The uncon-

strained and total-flow constrained gravity models

showed similar a similar, but weak, relationship

between establishment probability and the inbound

number of trips.

The size of prediction intervals for establishment

probability also followed a similar trend and varied

according to gravity model type (Fig. 2). Here,

variability around establishment probability was

lowest for the doubly-constrained gravity model due

to smaller confidence limits of fitted parameters

propagated from the dispersal models. In particular,

variability in establishment probability was apparent

only for lakes with moderate levels of propagule

pressure (l̂ij = 2.5–3.5) as estimated from the dou-

bly-constrained model. Prediction intervals around

establishment probability estimated from the other

three gravity model classes were similar in magni-

tude. In general, variability around estimated proba-

bilities of establishment was high throughout the

ranges of propagule pressure and tended to increase

with increasing levels of propagule pressure (Fig. 2).

When predictions from the establishment models

were validated with the testing portion of the data, the

predictive ability between probability of establish-

ment and observed presence/absence data differed

widely between the four classes of gravity model. As

the level of constraint increased between the gravity

model classes, the area under the receiver operating

curves likewise increased, indicating a stronger

ability of the model to correctly predict an invasion

if it had occurred (hit rate) relative to incorrectly

predicting an invasion had occurred when it in fact

had not (false alarms) (Table 2). Here, only the

production-constrained and doubly-constrained grav-

ity models had significant AUC scores (P(AUC) =

0.011 and � 0.001, respectively).

Fig. 2 Estimated probability of establishment as a function of

weighted inbound number of trips. Black lines indicated

boosted regressions fitted to the mean number of trips, and

grey areas indicate the 95% prediction interval in the

probability of establishment based on variability propagated

from fitting gravity models. The relationship between proba-

bility of establishment and propagule pressure was strongest

for the doubly-constrained model and weakest for the

unconstrained model

Table 2 Summary statistics for validation of the establishment model based on the testing data subset (n = 95)

Model AUC P(AUC) Hit rate False alarm rate Percent correct Cohen’s j

Unconstrained 0.579 0.115 0.577 0.465 0.546 0.088

Total-flow constrained 0.593 0.080 0.577 0.437 0.567 0.113

Production-constrained 0.647 0.011 0.654 0.408 0.608 0.197

Doubly-constrained 0.810 �0.001 0.731 0.211 0.773 0.473

The baseline probability of invasion based on Bythotrephes prevalence in the testing data subset required to calculate hit rates, false

alarm rates, percent correct and Cohen’s j was 0.252
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Similar trends in predictive power and level of

gravity model constraint were observed when a

baseline level for the probability of establishment

was applied to establishment probability for the

testing data subset. Here, lakes were predicted as

invaded if the estimated probability of establishment

was greater or equal to this baseline probability based

on the proportion of lakes invaded by Bythotrephes in

the testing data set. As the level of constraint

increased in the gravity models, hit rates, overall

percentage correctly classified and Cohen’s j
increased with a corresponding decrease in false

alarm rates (Table 2).

The corresponding spatial pattern of establishment

probability also differs between the four classes of

gravity models (Fig. 3). The wide range of establish-

ment probabilities corresponding to levels of incom-

ing propagule pressure for the doubly-constrained

gravity model (Fig. 2) allow for a stronger identifi-

cation of invasion hot spots (i.e. areas of high relative

probability of invasion) when these probabilities are

projected spatially (Fig. 3). That is, high levels for

establishment probability are concentrated in smaller

areas, unlike the lower levels of establishment

probability for the unconstrained and total-flow

gravity models that were spread out over a greater

area. For the doubly-constrained model, pockets of

high ([ 0.5) establishment probability are focused in

areas north of Lakes Erie and Ontario, to the east of

Georgian Bay (Lake Huron) as well as two large

inland lakes in northern Ontario that were reported

invaded. For the production-constrained gravity

model, areas of higher establishment probabilities

were focused north of Lake Erie, the southern half of

Ontario, and north of Lake Superior. Spatial patterns

of establishment probability were similar between the

unconstrained and total-flow models. Here, estimates

of moderate establishment probability (between 0.26

and 0.30) were uniformly distributed throughout most

of the province with the exception of pockets

surrounding non-invaded lakes in northern Ontario

and north of Lake Erie (Fig. 3).

Fig. 3 Spatial

pattern of estimated

probability of

establishment with

invaded and non-

invaded lakes in

Ontario, Canada
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Discussion

Estimating the dispersal of a NIS is the significant

first step in risk management because preventative

measures are most readily applied at the introduction

stage of the invasion sequence (Lodge et al. 2006).

Heretofore, ecologists have used a variety of gravity

models without consideration of the importance of

method used, with selection usually based upon the

nature of available data. In this study, we examined

the tradeoff between the relative ability of four

classes of gravity models to fit recreational traffic

data and the ability of establishment models based on

these gravity models to estimate the probability of

establishment by the spiny waterflea, Bythotrephes.

Simulation results indicate that ecologists should be

cognizant that the gravity method used may have

strong consequences on forecasted patterns of spread.

Evaluation of the unconstrained, total-flow-, pro-

duction- and doubly-constrained gravity models

revealed differences in each model’s ability to fit

recreational data as goodness of model fit decreased as

more constraints were applied to the gravity models.

The unconstrained model was best able to describe the

pattern of pairwise recreational traffic between source

and destination lakes, with the doubly-constrained

model performing the worse. Here, goodness of model

fit is a direct result of the optimization process during

ML estimation. As more constraints are added to the

gravity models, convergence on an optimal solution

during ML estimation becomes more difficult

(Anderson 1979). These results contrast qualitatively

with those from Black and Salter (1975), in which they

compare gravity model performance for different

model constraints and distance deterrence functions

for car and bus journeys to work. In their study, there

was a marginal improvement in the correlation

between the model trip matrix and survey trip data

for doubly-constrained model over the production-

constrained and unconstrained models. These qualita-

tive differences between the studies may be the result

of differences in methodology of model fitting as well

as characteristics of the data set. For example, even

though the distance decay parameter became larger

(i.e. more negative) with increasing model constraint in

both studies (parameter b1, Table 1), model fit was

highly affected by the ZINB dispersion parameter k,

whereas they used strictly deterministic forms of

gravity models.

Data requirements for the unconstrained gravity

model are minimal, however, and this class of

stochastic gravity model is recommended for describ-

ing pairwise trip distribution between lakes. Since

data is required on only extrinsic measures of

attraction, such a data set would be relatively easy

to acquire from government agencies. Although not

commonly used to model dispersal of NIS, uncon-

strained gravity models have been used extensively in

the economic, geographic and social literature since

their inception (e.g. Zipf 1946; Anderson 1979;

Fotheringham 1981; Johnston 1983). In a terrestrial

environment, unconstrained and total-flow con-

strained models may be used to model trade flows

between cities where population sizes may be used as

measures of propulsiveness and attractiveness. In a

scenario where data on only the total amount of trade

volume is available, the total-flow constrained model

estimates how the total trade is partitioned among

sources and destinations.

Establishment models developed with inbound

recreational traffic derived from the gravity models

displayed the opposite trend—prediction of estab-

lishment success increased as more constraints were

imposed on the nested gravity models. Although the

unconstrained model was the optimal form when

fitted to recreational trip data, this class of gravity

model was unable to detect hits any better than at

random when invasions occurred. The amount of

propagule pressure arriving at non-invaded and

invaded lakes account for the lack of fit. Relative to

the more constrained forms of gravity models, there

were smaller differences between the levels of

propagule pressure arriving at non-invaded versus

invaded lakes. That is, propagule pressure was not as

strong as a discriminator for invasion status in this

class of gravity model as per the doubly-constrained

model. As a consequence, estimated probabilities of

establishment in each lake are more reflective of the

proportion of invaded lakes (i.e. baseline probability)

than levels of inbound propagule pressure.

Depending on the NIS, the ‘‘cost’’ of not detecting

an invasion (miss) is likely greater than the cost of a

false alarm, thus the doubly-constrained model would

offer the most protective management option. It is

also noteworthy that some false alarms may, over the

long term, correctly predict invasions even if they are

incorrect in the short-term. For example, lakes

identified as vulnerable may already be invaded
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(though at non-perceptible population levels), or they

may be the most susceptible to future invasion. Thus,

if longer time scales are considered, many of the

lakes incorrectly predicted to be invaded by current

biological surveys may eventually become invaded

and properly classified.

However, the doubly-constrained gravity model is

also the most data intensive, since observations are

required for both recreational inflows and outflows to

each lake in the system. Here, such data is usually not

readily available from previous studies or govern-

ment agencies and additional costs and efforts are

required for collection. One consequence of choosing

the doubly-constrained gravity model, therefore, is

that a decision must be made between minimizing

costs either to collect the larger amounts of data

relative to other gravity model types or the costs of

missing an invasion. Such a decision could be

addressed by optimal control models described in

Leung et al. (2002).

The third alternative lies in a compromise

between the use of gravity models to model

recreational traffic and, as a sub-model, in estimat-

ing the probability of establishment. Here, we

recommend the use of production-constrained grav-

ity models if we consider that predicting invasions

(i.e. estimating the probability of establishment) is

more useful in NIS management than strictly

modeling recreational traffic. In addition, produc-

tion-constrained gravity models (e.g. Bossenbroek

et al. 2001, 2007; Leung et al. 2006) provide a

balance between predictive ability as measured by

the AUC or Cohen’s j and the amount of

information required to populate the model, thus

offering important advantages over data-intensive,

doubly-constrained models (e.g. Schneider et al.

1998; MacIsaac et al. 2004). The data required to

produce a production-constrained model is often

readily available from government agencies or non-

governmental organizations, thereby reducing both

cost and time in development of new models. For

example, the US Travel Data Center coordinates

surveys on US tourist traffic including point-of-

origin, length of duration and average amount of

money spent on the trip. Preliminary risk assess-

ment models may be developed by combining

specifics on the distribution of NIS that may be

transported by human-mediated mechanisms, and

patterns of human recreational movement.

In this study, we based our comparison of gravity

model classes assuming we had complete data on the

number of trips in the system and excluded unsam-

pled lakes from the analysis. Unsampled lakes may

serve as propagule sources if invaded or additional

destinations for recreational traffic, and as such, the

ability to predict invasion status may be influenced by

the proportion of lakes sampled. Theoretical simula-

tions by Leung and Delaney (2006) in which they

compared various approaches to dealing with unsam-

pled data suggest that sampling a small proportion of

sites tends to create a bias in underestimating the

probability of establishment for given levels of

propagule pressure when assuming complete data

on recreational trips. They recommended an approach

(MCMSAM) where they combine the observed

invasion status for sampled sites and Monte Carlo

simulations for unknown sites to determine the

invasion probability in the next time interval. In this

study, underestimating invasion probability is unli-

kely an issue when fitting the gravity models to

invasion data due to differences in methodology from

Leung and Delaney (2006). One possible advantage

of using non-parametric boosted regression trees in

lieu of specified functional relationships (e.g. asymp-

totic equations) between propagule pressure and

establishment probability lies in the functional rela-

tionship of the regression, in which the shape is

determined by data (e.g. Fig. 1). However, the

regression trees also did not extend to establishment

probabilities of 0 and 1 as with other asymptotic

equations, and thus should not be used to extrapolate

results beyond the range of data.

Further, results from Leung and Delaney (2006)

suggest that the invasion pattern across the entire

system influenced the probability of establishment for

a given destination, and in particular, that the number

of invaded sites sampled was the most important. If

we consider the situation where an unsampled lake is

invaded and serves as a source for propagules, we

expect the doubly-constrained model to be the best

performer in predicting invasion status as there is

already a significant difference in the levels of

estimated propagule flow to invaded versus nonin-

vaded lakes relative to the other methods (e.g.

Fig. 1).

Gravity models provide a flexible modeling

framework and can be used in conjunction with other

models in multistage invasion models. Although we
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consider only propagule flow from gravity models

as a sole predictor of establishment in this study,

gravity models can be combined with data on

habitat suitability and biotic integration into the

recipient assemblage. Measures of lake physico-

chemistry such as lake area and depth, calcium,

pH, water clarity and dissolved oxygen often define

the quality of available habitat for Bythotrephes

(MacIsaac et al. 2000; Branstrator et al. 2006;

Weisz and Yan 2010) and may be used as

additional predictors in boosted regression trees to

model Bythotrephes establishment. Bythotrephes

integration into the native community may be

modeled by incorporating presence/absence or

abundance data of native species as predictive

variables in Bythotrephes establishment models.

Similar approaches to combining dispersal and

establishment models have been commonly been

used for other NIS. For example, Herborg et al.

(2007) used the volume of ballast water transported in

transoceanic vessels as a proxy of propagule pressure,

in combination with an environmental niche model

(Genetic Algorithm for Rule-set Prediction) to assess

habitat suitability for the Chinese mitten crab Erioc-

heir sinensis in North America. Rouget and Richard-

son (2003) provided semi-mechanistic models for the

percentage cover and species occurrences for three

nonindigenous plant species in South Africa. Their

multistage model indicated that propagule pressure—

as measured by the distance from invasion foci—and

environmental variables were able to account for

70% of successful invasions.

A key consideration of gravity models is that the

basic formulation does not specifically incorporate

the individual-decision making process for recrea-

tionalists when deciding between competing desti-

nations. Thus, measures of destination attractiveness

should not be ascribed as influencing individual

recreational choice, but rather the overall pattern of

pairwise flows. To address this issue, a hierarchical

approach may be used where individual choice can

be modeled by a sub-model such as a Random

Utility Model. The probability of choosing one

destination over another is weighted by the cost to

travel to those lakes, which is then nested as input

into the gravity model (Siderelis and Moore 1998).

Additional avenues of research in the development

of gravity models for use in risk assessment require

the inclusion of NIS population dynamics such as

growth rate and mortality. This would enable

gravity models to serve as a bridge from describing

dispersal of individual propagules to that describing

population spread of NIS at a landscape level. For

example, models describing population growth can

be coupled with gravity models describing immi-

gration and emigration among systems, in a manner

analogous to metapopulation models. Currently,

gravity models are used primarily to describe

relative vector traffic to different lakes, usually in

terms of boater numbers (Schneider et al. 1998;

Bossenbroek et al. 2001, 2007; Leung et al. 2006).

In conclusion, our empirical data set provided an

opportunity to evaluate model selection between

competing classes of gravity models to model

recreational boat traffic, as well as to explore the

relationship between inbound propagule pressure

and invasion status. Our study provides guidance for

choosing the best model to describe propagule

pressure and the amount of effort required to collect

data in the planning stage of an experiment. Our

analyses indicate that the production-constrained

gravity model offers the best compromise between

describing recreational traffic and estimating estab-

lishment probability. Because data required to

formulate production-constrained gravity models is

often readily accessible, we recommend this proce-

dure over other possibilities for future studies.

Acknowledgments We are grateful for discussions with

M. A. Lewis and A. Potapov, and for financial support from

the Canadian Aquatic Invasive Species Network, an OGS

scholarship and NSERC postdoctoral fellowship to JRM, and

by an NSERC Discovery Grant and a DFO Invasive Species

Research Chair to HJM.

References

Allouche O, Tsoar A, Kadmon R (2006) Assessing the accu-

racy of species distribution models: prevalence, kappa and

the true skill statistic (TSS). J Appl Ecol 43:1223–1232

Anas A (1983) Discrete choice theory, information-theory and

the multinomial logit and gravity models. Trans Res B

Methodol 17:13–23

Anderson JE (1979) Theoretical foundation for the gravity

equation. Am Econ Rev 69:106–116

Black JA, Salter RJ (1975) A statistical evaluation of the

accuracy of a family of gravity models. Proc Instit Civil

Eng Part 2 Res Theor 59:1–20

Bockstael NE, McConnell KE, Strand IE (1989) A random

utility model for sportfishing: some preliminary results for

Florida. Mar Res Econ 6:245–260

2456 J. R. Muirhead, H. J. MacIsaac

123



Bossenbroek JM, Kraft CE, Nekola JC (2001) Prediction of

long-distance dispersal using gravity models: zebra

mussel invasion of inland lakes. Ecol Appl 11:1778–

1788

Bossenbroek JM, Johnson LE, Peters B, Lodge DM (2007)

Forecasting the expansion of zebra mussels in the United

States. Con Biol 21:800–810

Boudreau SA, Yan ND (2004) Auditing the accuracy of a

volunteer-based surveillance program for an aquatic

invader Bythotrephes. Environ Monitor Assess 91:17–26

Branstrator DK, Brown ME, Shannon LJ, Thabes M, Heim-

gartner K (2006) Range expansion of Bythotrephes lon-
gimanus in North America: evaluating habitat

characteristics in the spread of an exotic invader. Biol

Invas 8:1367–1379

Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule

pressure: a null model for biological invasions. Biol Invas

8:1023–1037

Davis MA (2003) Biotic globalization: does competition from

introduced species threaten biodiversity? Bioscience

53:481–489

Dempster AP, Laird NM, Rubin DB (1977) Maximum likeli-

hood from incomplete data via the EM algorithm. J R Stat

Soc Ser B (Methodological) 39:1–38

Efron B, Tibshirani R (1986) Bootstrap methods for standard

errors, confidence intervals, and other measures of sta-

tistical accuracy. Stat Sci 1:54–77

Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan

A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A,

Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C,

Nakamura M, Nakazawa Y, Overton JM, Peterson AT,

Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire

RE, Soberón J, Williams S, Wisz MS, Zimmerman NE

(2006) Novel methods improve prediction of species’

distributions from occurrence data. Ecography

29:129–151

Flowerdew R, Aitkin M (1982) A method of fitting the gravity

model based on the Poisson distribution. J Reg Sci

22:191–202

Forsyth DM, Duncan RP (2001) Propagule size and the relative

success of exotic ungulate and bird introductions to New

Zealand. Am Nat 157:583–595

Fotheringham AS (1981) Spatial structure and distance-decay

parameters. Ann Assoc Am Geogr 71:425–436

Fridley JD, Stachowicz JJ, Naeem S, Sax DF, Seabloom EW,

Smith MD, Stohlgren TJ, Tilman D, Von Holle B (2007)

The invasion paradox: reconciling pattern and process in

species invasions. Ecology 88:3–17

Hayes KR, Barry SC (2008) Are there any consistent predictors

of invasion success? Biol Invas 10:483–506

Haynes KE, Fotheringham AS (1984) Gravity and spatial

interaction models. Sage, Beverly Hills

Herborg L-M, Jerde CL, Lodge DM, Ruiz GM, MacIsaac HJ

(2007) Predicting invasion risk using measures of intro-

duction effort and environmental niche models. Ecol Appl

17:663–674

Huff DL (1959) Geographical aspects of consumer behavior.

U Wash Bus Rev 18:27–37

Jansakul N (2005) Fitting a zero-inflated negative binomial

model via R. In: Proceedings of the 20th international

Wksh Stat Model, pp 277–284

Jarnagin ST, Swan BK, Kerfoot WC (2000) Fish as vectors in

the dispersal of Bythotrephes cederstroemi: diapausing

eggs survive passage through the gut. Freshw Biol

43:579–589

Jeschke JM, Strayer DL (2005) Invasion success of vertebrates

in Europe and North America. Proc Natl Acad Sci USA

102:7198–7202

Johannsson OE, Mills EL, Ogorman R (1991) Changes in the

nearshore and offshore zooplankton communities in Lake

Ontario—1981–88. Can J Fish Aquat Sci 48:1546–1557

Ketelaars HAM, Gille L (1994) Range extension of the pred-

atory cladoceran Bythotrephes longimanus Leydig 1860

(Crustacea, Onychopoda) in Western Europe. Neth J

Aquat Ecol 28:175–180

Kolar CS, Lodge DM (2001) Progress in invasion biology:

predicting invaders. Trends Ecol Evol 16:199–204

Kolar CS, Lodge DM (2002) Ecological predictions and risk

assessment for alien fishes in North America. Science

298:1233–1236

Leung B, Delaney DG (2006) Managing sparse data in bio-

logical invasions: a simulation study. Ecol Model

198:229–239

Leung B, Lodge DM, Finnoff D, Shogren JF, Lewis MA,

Lamberti GA (2002) An ounce of prevention or a pound

of cure: bioeconomic risk analysis of invasive species.

Proc R Soc Lond Ser B 269:2407–2413

Leung B, Drake JM, Lodge DM (2004) Predicting invasions:

propagule pressure and the gravity of Allee effects.

Ecology 85:1651–1660

Leung B, Bossenbroek JM, Lodge DM (2006) Boats, pathways,

and aquatic biological invasions, estimating dispersal

potential with gravity models. Biol Invas 8:241–254

Linneman HV (1966) An econometric study of international

trade flows. North-Holland, Amsterdam

Liu CR, Berry PM, Dawson TP, Pearson RG (2005) Selecting

thresholds of occurrence in the prediction of species dis-

tributions. Ecography 28:385–393
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