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Prediction and error in multi-stage models
for spread of aquatic non-indigenous
species
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INTRODUCTION

Invasions of ecosystems by non-indigenous species (NIS) are

occurring at increasing rates globally (Gollasch, 2006; Ricc-

iardi, 2007; Hulme, 2009). Proactive efforts to reduce invasions

are the most cost-effective management option (e.g. Leung

et al., 2002; Finnoff et al., 2007), although managers may be

unwilling to ‘risk’ a preventative approach because of the high

uncertainty inherent in preventative practices relative to post-

establishment control (Simberloff, 2003; Finnoff et al., 2007).

Thus, a key challenge for invasion biologists exists with respect

to forecasting dispersal and establishment of NIS to inform the

most appropriate management decision (see Lodge et al.,

2006).

1Department of Biological Sciences, University

of Alberta, Edmonton, AB, T6G 2E9, Canada,
2Centre for Mathematical Biology, University

of Alberta, Edmonton, AB, T6G 2G1, Canada,
3Department of Mathematical and Statistical

Sciences, University of Alberta, Edmonton,

AB, T6G 2G1, Canada, 4Great Lakes Institute

for Environmental Research, University of

Windsor, 401 Sunset Avenue, Windsor, ON,

N9B 3P4, Canada

*Correspondence: Jim R. Muirhead,

Smithsonian Environmental Research

Center, PO Box 28, Edgewater, MD 21037,

USA.

E-mail: muirheadj@si.edu

ABSTRACT

Aim Predictions of spread of non-indigenous species allow for greater efficiency

in managing invasions by targeting areas for preventative measures. The invasion

sequence is a useful concept in predictions of spread, as it allows us to test

hypotheses about the transport and establishment of propagules in novel habitats.

Our aims are twofold: (1) to develop and validate multi-stage invasion models for

the introduced fishhook waterflea, Cercopagis pengoi, and (2) to assess how

variability in the transport patterns of the propagules influences the accuracy and

spatial extent for predictions of spread.

Location New York State, USA.

Methods We developed a two-stage model for the spread of C. pengoi. First, we

developed a stochastic gravity model for dispersal based on surveys of recreational

boat traffic in New York State as a proxy for propagule pressure. We then

modelled the probability of establishment based on predicted levels of propagule

pressure and measures of lakes’ physicochemistry. In addition, we used Monte

Carlo simulations based on the gravity model to propagate variability in boater

traffic through the establishment model to assess how uncertainty in dispersal

influenced predictions of spread.

Results The amount recreationalists were willing to spend, lake area and

population size of the city nearest to the destination lake were significant factors

affecting boater traffic. In turn, boater traffic, lake area, specific conductance and

turbidity were significant predictors of establishment. The inclusion of stochastic

dispersal reduced the rate of false positives (i.e. incorrect prediction of an

invasion) in detecting invasions at the upper 95% prediction interval for the

probability of establishment.

Main conclusions Combinations of measures of propagule pressure, habitat

suitability and stochastic dispersal allow for the most accurate predictions of

spread. Further, multi-stage spread models may overestimate the extent of spread

if stochasticity in early stages of the models is not considered.

Keywords

Biological invasions, Cercopagis pengoi, gravity model, invasion sequence,

spread, stochasticity.
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An extensive literature exists for both theoretical and

empirical approaches to predict invasions (e.g. Sakai et al.,

2001). Much of the earlier research on forecasting invasions

focused on attributes intrinsic to the NIS (e.g. Thuiller et al.,

2006; Statzner et al., 2007) or characteristics of the recipient

community (e.g. Stachowicz et al., 2002; Fridley et al., 2007).

More recently, efforts have used the conceptual model of the

invasion sequence, which is characterized by a series of steps the

NIS must overcome to become successfully established. These

steps include the initial transport of propagules from native or

recently invaded sources, survival during exposure to (or

exploitation of) physical and chemical characteristics of the new

habitat, and integration into the existing community (Richard-

son et al., 2000; Kolar & Lodge, 2001; Heger & Trepl, 2003;

Melbourne et al., 2007; Theoharides & Dukes, 2007). Colautti

et al. (2006) proposed that hypothesis testing follows this

sequence, as characteristics of the NIS or the recipient

community that may facilitate or hinder invasion may be

applicable only at certain stages of the sequence. Here, we follow

this recommendation and develop a transport model for NIS

propagules and assess their establishment upon encountering

the physical and chemical characteristics of the novel habitat.

Propagule pressure may broadly be defined as the rate of

introduction comprised of the number of introduction events,

and the number and quality of NIS individuals transported per

event. Propagule pressure has been increasingly recognized as a

key determinant of invasion success across a range of taxa, as it

may influence both the spatial extent of the invasion and level

of impact (e.g. Lockwood et al., 2005; Von Holle & Simberloff,

2005). Furthermore, propagule pressure may influence inva-

sion success at different stages of the invasion sequence. For

example, in addition to the initial transport of propagules into

novel habitat, sufficient levels of inbound propagules may

bolster the establishment of small populations that otherwise

would have disappeared owing to demographic stochasticity

and may provide an ongoing source of genetic heterogeneity to

the founding population (Simberloff, 2009). Because the

introduction of propagules is often the stage of the invasion

sequence at which management efforts to control the spread

are most efficient, it is a major focus of policy recommenda-

tions (e.g., Lodge et al., 2006; Reaser et al., 2008).

Vector-based or transport predictive models are often

successful at predicting NIS dispersal. In particular, gravity

models that were initially developed to model immigration

patterns (Zipf, 1946) and trade flows (Linneman, 1966)

between spatially discrete sources and destinations have been

applied to model the flow of recreational boater traffic, a likely

vector for the transport of aquatic NIS. For example, gravity

models have been used to model dispersal of aquatic NIS based

on single-trip recreationalist movement between invaded and

non-invaded lakes (Schneider et al., 1998; MacIsaac et al.,

2004) or multi-trip movement incorporating trips from the

recreationalists’ homes to invaded lakes (Bossenbroek et al.,

2001; Leung et al., 2006).

Another approach to predict invasions has sought to link

factors extrinsic to the NIS – such as environmental suitability

or native species community composition – to invasion

success. Environmental suitability in novel regions is most

often forecast by matching correlates of species occurrence or

abundance with environmental data from the native range with

those in the new region. For example, Herborg et al. (2007)

used an environmental niche model to forecast suitable habitat

in North America for the Chinese mitten crab Eriocheir sinensis

based upon its current distributions in Asia and Europe.

Alternatively, lower biotic resistance from the recipient com-

munity because of decreased competition from native species

(e.g. Dzialowski et al., 2007), or differences in traits between

native and introduced species augmented by shifts in environ-

mental conditions (Moles et al., 2008) or environmental

heterogeneity (Melbourne et al., 2007) also may facilitate

invasion.

The integration of multiple stages of the invasion sequence

into single models or use of a hierarchical approach in which

stage-specific hypotheses are sequentially tested allows us to

assess contributions of each stage to overall invasion success or

to isolate the stage of the invasion sequence where the

invasion first fails. Leung & Mandrak (2007), for example,

developed a joint probability model for propagule pressure

and environmental conditions to predict establishment of the

zebra mussel Dreissena polymorpha. There, the inclusion of

environmental characteristics in the joint model provided

better predictive power than the model containing only

propagule pressure. Similarly, Rouget & Richardson (2003)

found that predictions of plant invasions were strongly related

to environmental conditions after first accounting for the

effect of propagule pressure. In their model, propagule

pressure was a stronger predictor than environmental factors

considered separately.

The fishhook waterflea, Cercopagis pengoi (Crustacea:

Cladocera), is a relatively recent Great Lakes invader, having

first been reported in Lake Ontario in 1998 (MacIsaac et al.,

1999). It spread to Lakes Erie and Michigan by 2001, as well as

to several inland lakes in New York State (Makarewicz et al.,

2001; Witt et al., 2005). Introductions of C. pengoi have been

linked to negative impacts in the native community including

declines in abundance and diversity of small-sized zooplankton

in the Baltic Sea (e.g. Ojaveer et al., 2004; Kotta et al., 2006)

and Lake Ontario (e.g. Laxson et al., 2003; Warner et al.,

2006). Cercopagis may compete with larval fish for zooplank-

ton prey, thereby limiting fish production, but may also be of

benefit as an alternate food source for planktivorous fish

(Kotta et al., 2006).

Similar to dispersal of another non-indigenous cladoceran,

Bythotrephes longimanus, Cercopagis dispersal may be facili-

tated by overland transport associated with recreational

movement of contaminated trailered boats or fishing gear.

Like Bythotrephes, Cercopagis has alternating reproductive

modes, with predominant parthenogenetic growth occasionally

interrupted by sexual reproduction and production of resting

stages. Despite its potential for high population growth and

subsequent spread among inland lakes, there have been no

studies to date to predict Cercopagis spread in North America.
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In this paper, we assess Cercopagis spread among lakes by

developing a stochastic gravity model to explore propagule

pressure associated with recreational boat traffic and use these

estimates of inbound propagule flow as input into a subsequent

establishment model. Unlike previous gravity models of NIS

dispersal (e.g. Bossenbroek et al., 2001; Leung et al., 2006), we

treat recreational traffic as a stochastic process and model traffic

between lakes as a random variable described by a statistical

distribution. We use this model to test a series of hypotheses

about economic, social and geographical factors governing

boater traffic between lakes to derive the most parsimonious

dispersal model. We then develop a baseline establishment

model based on mean propagule flow and lake physicochem-

istry and propagate variability from the dispersal stage of the

invasion sequence to evaluate the effect of stochastic boater

movement on estimated probabilities of establishment. This

approach allows us to evaluate how uncertainty in earlier stages

of the invasion sequence affects our ability to predict lake

invasion status and spatial extent of spread.

METHODS

Data collection

We conducted creel surveys of recreational boaters at several

boat launches in New York State including the Finger Lakes

and lakes Erie and Ontario during the summer of 2004. We

were able to collect data on 534 outbound trips where the

recreationalists trailered their boats from 11 lakes with

established Cercopagis populations, including Lake Erie,

Ontario and nine inland lakes in the Finger Lakes region.

Here, we treated Lakes Erie and Ontario similarly to other

lakes and considered them as having a single access point

where we collected survey data. Information from the surveys

included the lake last visited by the boaters, lake(s) they were

planning to visit, the length of time they were planning on

spending at the lake (average (±1 SD), 1.94 ± 2.14 days) and

the amount of money they spent to arrive at the lake

($141 ± 417). Additional data required to parameterize the

dispersal model such as lake area and road distance between

lakes were extracted from TIGER/Line geospatial data pro-

vided by the U.S. Census Bureau (http://www.census.gov/geo/

www/tiger/).

Stochastic Gravity Model

To model recreational boater movement between lakes i

(invaded) and j (invaded and non-invaded), we consider the

number of pairwise trips as a random variable following a

zero-inflated negative binomial (ZINB) distribution, which can

be built up by a series of hierarchical sub-models (Fig. 1,

Stochastic Gravity model). The ZINB is a generalized form of a

Road 
distance 

dij

Lake Attractivity 
wj = c + pβ1

j

Variables
- Cost to travel to 

each lake cj

- Population near 
destination lake pj

Observed 
number of trips 
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and j 

Estimate 

parameter
 β1

μij = wjd
−α
ij

Calculate zero-inflation
ωij = logit (γ0+ γ1dij + γ2aj)
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distancedij
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Fit stochastic gravity model
Yij ∼ ZINB(μ̂ij ωij k)
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for 
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Figure 1 Flowchart of model inputs for the stochastic dispersal model and Monte Carlo error propagation to the establishment models.

Circles indicate model inputs, rectangles indicate intermediate or sub-models, and parallelograms represent model outputs or parameters

estimated during the model fitting process. Grey boxes indicate the main dispersal and logistic establishment models.
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Poisson distribution and is useful for describing count data

that is both overdispersed and contains an excess of zeros that

are either structural in nature or arise because of sparse

sampling effort. The ZINB distribution is described by three

parameters, yij ¼ ZINB lij; k;xij

� �
, where lij and k are the

mean number of trips and dispersion parameter of the negative

binomial (NB) distribution, and xij is a parameter describing

zero-inflation as the probability that only yij = 0 can occur,

and 1� xij

� �
the probability that yij ¼ NB lij; k

� �
is occur-

ring.

First, the mean number of trips between lakes i and j can be

expressed in a sub-model as:

l̂ij ¼ wjd
�a
ij ð1Þ

where wj is a composite measure of destination lake attrac-

tiveness, and dij is the road distance between lakes i and j,

and a is a fitted parameter to account for distance decay. Here,

trips between i and j are asymmetric because data were

available on whether the recreationalist visited lake i before j.

In addition, the model is limited to cases where i „ j.

Destination lake attractiveness, wj, was in turn parameterized

according to:

wj ¼ eb0 þ eb1 log aj

� �
þ eb2 cj þ eb3 p

b4

j þ eb5 d
b6

p;j ð2Þ

with aj = lake area, cj = average cost the recreationalist paid to

arrive at the lake, pj = population size of nearest city/town and

dp,j is the distance of the nearest city/town to the destination

lake. Lake attractiveness is constrained to a minimum 0 by

exponentiating the vector of fitted parameters b, with the

exception of the power functions associated with population

size and distance of the nearest city/town. Finally, zero-

inflation of the ZINB distribution was estimated by:

log
xij

1� xij

� �
¼ c0 þ c1dij þ c2log aj

� �
ð3Þ

where dij is the distance between lakes i and j (in km), and aj is

the surface area of the destination lake (in ha). Because

maximum-likelihood estimates for parameters used in esti-

mating lij, k and xij for the ZINB must be solved simulta-

neously, the Expectation–Maximization (EM) algorithm

(Dempster et al., 1977) is a useful approach for MLE in

modelling mixture distributions when other methods fail to

converge (see Appendix S1 in Supporting Information). In

general terms, the log-likelihood function for the ZINB is a

sum of two components: one log-likelihood describing the

probability of zero-inflation (hereafter referred as LLx) and

another log-likelihood conditional on this describing a NB

distribution weighted by zero-inflation (LLNB).

The statistical significance of variables used in measures of

the mean number of trips lij, the dispersion parameter k and

estimates of zero-inflation xij were assessed using likelihood

ratio tests. Non-significant variables or parameter estimates

were eliminated from the dispersal model with the most

parsimonious model used in further analyses.

Predicting areas at risk for Cercopagis establishment

In the second stage of modelling Cercopagis establishment in

lakes, significance of propagule pressure and water physico-

chemistry was tested in a logistic model using Cercopagis

presence/absence data (Fig. 1, Establishment model). Here,

expected propagule pressure to specified destinations is simply

the summed inflow of the estimated number of trips into each

destination j across the invaded source lakes adjusting for zero-

inflation, E lij

� �
¼
P

i

1� xij

� �
lij.

Lake area and water quality data from the United States

Geological Survey (http://waterdata.usgs.gov/nwis) including

specific conductance (SC), turbidity (TB), pH, phosphorus

(P), total nitrogen (TN) and dissolved oxygen (DO) concen-

tration were used as predictors of establishment success for 871

destinations. Water quality data for each lake were summarized

by taking the average, minimum and maximum value from

samples taken since 1998 to the present corresponding to the

period beginning with the first record of Cercopagis establish-

ment. Missing water quality data for 24% of the destination

lakes was estimated using kriging from a pool of 29,886 sites

across New York. Lake physicochemistry and characteristics of

the nearest city or town to invaded and non-invaded lakes are

summarized in Table 1.

We developed the establishment models in two stages,

excluding and then including stochastic variability from the

dispersal model. First, we estimated baseline probabilities of

Table 1 Means (± SD) for measures of lake physicochemistry and

factors influencing lake attractivity to recreational traffic (N = 871

lakes).

Parameter Non-invaded lakes Invaded lakes

Lake area (ha) 3.47E+02 (3.96E+03) 3.76E+05 (8.76E+05)

Nearest city area (km2) 30.71 (90.26) 7.51 (11.90)

Population size of

nearest city

4.21E+04 (5.45E+05) 6.65E+03 (1.47E+04)

Distance to city (km) 10.18 (8.64) 14.48 (28.85)

Min SC (mS cm)2) 1.28E+02 (2.67E+02) 3.31E+02 (2.55E+02)

Mean SC (mS cm)2) 2.30E+02 (1.01E+03) 6.95E+02 (1.02E+03)

Max SC (mS cm)2) 4.09E+02 (2.15E+03) 2.03E+03 (5.26E+03)

Min DO (mg L)1) 6.68 (2.10) 7.67 (2.22)

Max DO (mg L)1) 12.84 (3.15) 14.07 (1.13)

Min P (mg L)1) 0.02 (0.01) 0.04 (0.06)

Mean P (mg L)1) 0.04 (0.04) 0.09 (0.07)

Max P (mg L)1) 0.22 (0.30) 0.42 (0.49)

Min pH 6.35 (1.00) 7.32 (0.83)

Mean pH 7.01 (0.72) 7.94 (0.52)

Max pH 7.75 (0.71) 8.39 (0.49)

Min TN (mg L)1) 0.62 (0.44) 1.63 (1.12)

Mean TN (mg L)1) 1.15 (0.63) 2.47 (1.16)

Max TN (mg L)1) 2.64 (1.48) 4.34 (2.06)

Min TB (NTU) 1.45 (1.67) 4.37 (3.70)

Mean TB (NTU) 5.02 (9.57) 17.81 (8.31)

Max TB (NTU) 29.17 (63.75) 105.16 (111.04)

Abbreviations for water chemistry: SC, specific conductance; DO,

dissolved oxygen; P, phosphorus; TN, total nitrogen; TB, turbidity.

J. R. Muirhead et al.
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establishment by a logistic regression model relating Cercopagis

presence/absence to propagule pressure and water quality data

where expected propagule pressure is based on the best-fit

gravity model. The logistic model was simplified as much as

possible using the fewest significant predictors that were

determined by stepwise evaluation of the model’s AIC in both

forward and reverse directions based on the expected number

of inbound trips, E lij

� �
and the complete suite of water

physicochemistry. To cross-validate the logistic establishment

models, we used a jackknife leave-one-out method where each

destination lake was left out of the data set in turn and the

models trained on the remaining lakes. Establishment prob-

abilities were then estimated for the hold-out samples.

Second, we used a randomization approach to propagate

variability from the dispersal model to the most parsimonious

establishment model. Similar to the cross-validation of the

baseline establishment model, data were repeatedly subset into

training with a hold-out observation for testing. At each

iteration, random numbers of pairwise trips were drawn from a

ZINB distribution parameterized from the dispersal model,

Yij�ZINB(lij,k,xij), summed for each destination and com-

bined with water quality data (Fig. 1). A logistic regression

model was fitted to the training subset, and confidence intervals

for the fitted parameters were calculated from bias-corrected

2.5th and 97.5th percentiles of the resampled parameters (Efron

& Tibshirani, 1986). In turn, prediction intervals (PI) for

establishment probability for the testing data subset were based

on the confidence limits with the propagated errors.

We evaluated the relationship between establishment prob-

ability and Cercopagis presence/absence data by means of the

shape and area under the receiver operating characteristic

curve (AUC) for baseline probability and PI with and without

the propagated errors. This allows us to assess how the

inclusion of stochastic variability affects estimates of hit rates

(correctly predicting invasions when they occur) and false

alarm rates (incorrectly predicting invasions as occurring when

in fact, they have not) across a range of probability thresholds.

In addition, we calculated the optimum threshold for estab-

lishment probability based on the receiver operating charac-

teristic (ROC) curve and establishment probability from the

baseline dispersal model without error propagation. The

optimum threshold was calculated as the probability of

establishment along the ROC curve that was closest to the

curve if there was perfect model fit (i.e. 100% hit rate and 0%

false alarms) (Liu et al., 2005). Lakes were classified as sus-

ceptible to invasion if their establishment probability was equal

to or larger than this threshold. This, in turn, allowed us to

compare the numbers of lakes predicted to be invaded based

on this threshold and observed invasion status and quantify the

effect of stochastic variability based on the frequency of correct

invasion predictions and false alarms.

After determining the relationship between establishment

probability and observed invasion status, we standardized the

coefficients of the logistic regression to assess which variables

had the most influence on establishment probability. We

standardized the coefficients for each variable according to:

b� ¼ bsxR
.

slogit Ŷð Þ, where b and R are the raw coefficients and

square root of Pearson’s correlation coefficient and sxand

slogit Ŷð Þare standard deviations of the independent and logit-

transformed predicted values for presence/absence, respectively

(Menard, 2004). This method standardizes for variation in

both the independent and dependent variables such that one

standard deviation in the change of the independent variables

can then be interpreted as producing b* standard deviations in

the dependent variable. Standardized coefficients were calcu-

lated for both the baseline model as well as model with

stochastic variability. Confidence intervals for the standardized

coefficients incorporating stochastic variability were calculated

based on 95% bias-corrected bootstrap confidence limits

(Efron & Tibshirani, 1986).

In the previous model, the timing of lake invasions was not

specifically considered, as flow from currently invaded lakes

(n = 11) was modelled to other invaded and non-invaded

lakes. A subsequent dispersal and establishment model con-

sidered propagule flow from the first invaded lake (Lake

Ontario) to Lake Erie and the inland lakes in New York. This

scenario allows for a true validation of a model for Cercopagis

spread because model predictions were compared against the

invasion status of lakes that were invaded later on. In this

scenario, we recalculated the fitted parameters for the stochas-

tic gravity model using Lake Ontario as the sole source. Similar

to the model for the 11 source lakes, we generated a random

number of trips leaving Lake Ontario to each destination and

fitted a logistic establishment model with the same water

chemistry variables selected from the previous scenario.

RESULTS

Stochastic dispersal model

A summary of hypothesis tests and corresponding likelihood

ratio tests are presented in Table 2. Lake area was a significant

term in the logistical model to estimate zero-inflation xij

(equation 3), but not as a measure of destination attractiveness

(equation 2). Population size was also significant in the model

for lake attractivity (equation 2).

The estimated number of trips between pairs of lakes is

given by l̂ij ¼ wjd
�0:576
ij with dispersion parameter for the ZINB

distribution, k = 0.92. Nested within this model, lake attrac-

tiveness is modelled as wj ¼ c þ e1:788p0:259
j , where c is the

average cost to arrive at lake j and pj is population size of the

nearest city or town to the destination lake. This reduced

model was not significantly different from the full model of

lake attractiveness as determined by likelihood ratio testing

(v2 = 0.669, d.f. = 4, P = 0.955).

The final model for estimation of zero-inflation is given by:

log
xij

1� xij

� �
¼ 9:60þ 0:01dij � 1:37 log aj

� �

for each pairwise trip with fitted parameters c. Confidence

limits for the fitted parameters c0, c1 and c2 are presented in

Table 3.

Prediction and error in multi-stage models
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Predicting Cercopagis establishment

After elimination of non-significant variables based on the

stepwise procedure, the baseline logistic model for estimating

the probability of Cercopagis establishment was determined by

propagule pressure lj, lake area (aj), maximum SC and

minimum and maximum TB:

log
pj

1� pj

� �
¼ �11:89þ 1:99E�1lj þ 8:35E�1 log aj

� �

þ 1:82E�4SCmax;j þ 8:19E�1TBmin;j

� 2:36E�2TBmax;j:

With the addition of the water chemistry data, there was a

significant improvement in model fit over a logistic model

using propagule pressure alone (v2 = 22.48, d.f. = 4,

P = 0.0002). Finally, when coefficients for the logistic model

were standardized, maximum and minimum TB had the most

influence on estimated probability of establishment, followed

by propagule pressure (Fig. 2).

There was high concordance with the baseline probability of

establishment estimated for the testing data and observed

Cercopagis presence/absence for each of the destination lakes.

The area under the receiver operating characteristic curve

(AUC = 0.984) was significantly different from 0.5 (P < 0.001)

(Fig. 3a).

Effect of stochastic variability on predicting

establishment

The impact from the inclusion of stochastic variability in the

dispersal model on the ability of the establishment models to

predict the invasion status of lakes depended on the sensitivity

of the metric used to measure the change. At the upper 95%

prediction limit excluding stochastic variability, there was a

negligible decrease in AUC relative to the baseline model

(0.991 vs. 0.994) (Fig. 3a). However, when we chose an

optimum threshold for the baseline model (P = 0.010) above

which lakes are predicted to be invaded, the chance of

incorrectly predicting a lake as invaded when it is not (false

alarm) increased from 3% to 100%, with only a 1% chance of

correctly predicting the overall invasion status of the lakes

(Table 4). Similarly, in a comparison of the upper 95% PI for

the models excluding and including variability from the

dispersal stage, there was no change in the overall AUC

(Fig. 3a), but the chance of committing false alarms decreased

from 100% to 78% (Table 4).

At the lower 95% prediction limits for the models without

and with stochastic variability, estimated probabilities of

establishment were poor predictors of observed invasion

status. Probabilities of establishment estimated from the model

without stochastic variation were able to significantly predict

invasion status (AUC = 0.65, P = 0.03), but probabilities

based on included stochasticity were unable to predict better

than random (AUC = 0.60, P = 0.12). There was no change in

either false alarm or hit rates at the lower 95% PI in a

comparison of the models excluding and including stochas-

ticity (Table 4).

Areas with high probabilities of Cercopagis establishment

were concentrated primarily on a cluster of seven invaded

lakes in the Finger Lakes region when the spatial extent of

establishment probabilities is taken under consideration

(Fig. 4a). When variability was propagated from the dispersal

model, the spatial extent of predicted establishment based on

the 95% prediction limits differed extensively. For the upper

prediction limit, the spatial extent of establishment probability

at the higher prediction limit was overly inclusive. At a

Table 2 Summary of hypothesis tests for variables used as measures of lake attractivity, covariates in the logistic regression and fitted

parameters. LLx and LLNB refer to the log-likelihood estimates for the zero-inflated and weighted negative binomial components of the ZINB.

Model Parameter/hypothesis tested LLNB LLx LLTotal

LLTotal �max

ðLLTotalÞ d.f. v2 Pr v2ð Þ

1 Full model )397.807 )310.909 )708.716

2 Testing for significance of intercept exp (b0) = 0 )397.819 )310.927 )708.746 )0.031 1 0.062 8.04E)01

3 Testing for significance of lake area (a = 0)

(removed from LLNB only)

)398.153 )310.776 )708.929 )0.213 2 0.426 8.08E)01

4* Testing for significance of lake area (a = 0)

(removed from both LLNBand LLx)

)404.451 )662.348 )1066.889 )358.174 3 716.348 5.99E)155

5* Testing for cost of travel to attractiveness cj ¼ 0
� �

)399.796 )311.094 )710.890 )2.174 1 4.348 3.71E)02

6* Testing for linear relationship between population size

and attractiveness b4 ¼ 1ð Þ
)402.638 )310.752 )713.389 )4.674 1 9.348 2.23E)03

7* Testing for population size to attractiveness pj

� �
¼ 0 )404.564 )310.650 )715.214 )6.499 2 12.998 1.51E)03

8 Testing for linear relationship of population

distance to lake b6 ¼ 1ð Þ
)399.254 )310.586 )709.840 )1.125 1 2.250 1.34E)01

9 Testing for population distance to attractiveness dp ¼ 0
� �

)397.796 )310.930 )708.726 )0.011 2 0.022 9.89E)01

10* Testing for inverse linear relationship of source to

destination distance a ¼ �1ð Þ
)440.131 )296.855 )736.986 )28.271 1 56.542 5.50E)14

*Significant at a = 0.05.
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probability threshold between 0.81 and 1.00, predicted areas

of establishment extended from Lake Ontario to the Pennsyl-

vania border (Fig. 4b). In contrast, predicted areas at high risk

of invasion were focused on the cluster of lakes already

invaded with the addition of several isolated hotspots in

eastern New York State when stochasticity was propagated

(Fig. 4c).

Dispersal and establishment models with Lake

Ontario as the source for invasions

Parameter estimates for the dispersal model for Lake Ontario

were not significantly different from the dispersal model

estimated using all 11 source lakes as determined by overlapping

confidence intervals (Table 3). In the sub-model estimating the

mean number of pairwise trips leaving Lake Ontario, road

distance between lakes was slightly less of a deterrent (i.e. less

negative) than all 11 source lakes were considered (a = )0.485),

but not significantly based on confidence intervals [)0.578,

)0.393]. In terms of destination lake attractivity, wj was

negatively related to the average cost of travelling to a specified

destination (b4 = )2.11), but the confidence intervals indicate

that it was not significant from 0, unlike from the other scenario.

The dispersion parameter for the ZINB, k = 1.39 [0.681,

2.858], was also not significantly larger than that for the 11

source lakes model, and parameters used in the estimation of

zero-inflation,

log
xij

1� xij

� �
¼ 8:36þ 8:83E�3dij � 1:25log aj

� �
;

were also not different from parameter estimates for the other

scenario.

Establishment model with Lake Ontario as sole source

In the scenario with Lake Ontario as the sole source, the

probability of Cercopagis establishment was described by:

log
pj

1� pj

� �
¼ �13:28þ 8:12E�1l̂j þ 1:17 log aj

� �

þ 1:90E�4SCmax;j þ 6:74E�1TBmin;j

� 1:58E�2TBmax;j:

There was no significant difference between the fitted param-

eters for this establishment model in this scenario when
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Figure 2 Standardized logistic regression coefficients with bias-

corrected 95% CL for establishment models with 11 lakes and Lake

Ontario as sources. Plot markers indicate logistic regression

coefficients for the baseline model, and confidence limits incor-

porate stochastic variability from the dispersal model. Distance

from horizontal dotted line indicates relative change in standard

deviations in the probability of establishment with 1 SD change in

predictor variable.

Table 3 Summary table of parameter values with 95% confidence limits for the invasion scenarios with 11 currently invaded lakes as

sources and Lake Ontario as sole source. Confidence limits for parameters in the establishment model excluding and including stochastic

variability from the dispersal model are enclosed by square and curly brackets, respectively.

Model

Sub-models Parameter

11 source lakes Lake Ontario

Parameter value and confidence limits Parameter value and confidence limits

Stochastic gravity model k 0.92 [0.664, 1.167] 1.39 [0.681, 2.858]

Mean number of trips, lij a )0.58 [)0.845, )0.308] )0.49 [)0.578, )0.393]

Lake attractivity, wj b4 0.26 [0.086, 0.431] )2.11 [)4.409, 0.422]

Zero-inflation, xij c0 9.60 [8.605, 10.699] 8.36 [6.029, 11.260]

c1 0.01 [0.010, 0.014] 8.83E)3 [3.860E)3, 1.424E)2]

c2 )1.37 [)1.533, )1.230] )1.25 [)1.681, )0.906]

Establishment model /0 )11.89 [)18.268, )7.861] {)13.337, )9.443} )13.28 [)20.057, )8.237] {)13.603, )9.544}

/1 0.20 [0.093, 0.428] {0.104, 0.678} 0.81 [0.484, 3.284] {0.097, 0.755}

/2 0.84 [0.253, 1.532] {0.170, 1.008} 1.17 [0.301, 1.786] {)0.117, 1.021}

/3 1.82E)4 [2.03E)5, 3.16E)4]

{1.221E)4, 2.087E)4}

1.90E)4 [3.458E)5, 3.337E)4]

{1.312E)4, 2.124E)4}

/4 0.82 [0.382, 1.416] {0.615, 1.299} 0.67 [0.455, 1.540] {0.617, 1.860}

/5 )2.36E)2 [)5.82E)2, )6.16E)3]

{)0.087, )0.014}

)1.58E)2 [)6.78E)2, )8.93E)3]

{)0.130, )0.014}
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compared to the 11 source lakes establishment model based on

overlapping confidence limits (Table 3). Also, as in the

scenario for the 11 source lakes, maximum and minimum

levels of TB had the greatest influence on the probability of

establishment, followed by propagule pressure (Fig. 2).

When Lake Ontario was considered the only source,

performance of the establishment model was extremely high

in being able to discriminate between true invasions and false

alarms as evaluated from the receiver operating characteristic

curve (AUC = 0.984, P << 0.001).

Prediction limits for Cercopagis establishment with

Lake Ontario as single source

Estimated probabilities of establishment varied greatly for

invaded and non-invaded lakes when stochastic variability was

propagated from the dispersal model. The average probability

of establishment for invaded lakes was 0.69 but ranged from

4.5E-7 to 0.97 at the lower and upper 95% prediction limits

when stochastic error was propagated. For non-invaded lakes,

stochastic variability resulted in establishment probabilities

that differed by two orders of magnitude between the lower

and upper 95% prediction [averages of 5.96E-7 vs. 1.36E-1].

The average probability of establishment for non-invaded lakes

was 4.53E-3 for the baseline model without error propagation.

Similar to the scenario with the 11 currently invaded lakes as

sources, there was negligible change in the AUC from

probabilities estimated from the baseline model to probabil-

ities at the upper 95% prediction limit (Fig. 2b). Likewise, hit

rates and false alarm rates were more sensitive to the addition

of stochasticity based on an optimum probability threshold of

P = 0.013 derived from the baseline model. At the upper PI,

the probability of committing false alarms decreased from 1.00

to 0.38 when variability was propagated, resulting in an overall

73% chance of correctly predicting invasions overall (Table 4).

At the lower prediction limit, the ability of the model to

correctly predict invasions (hit rate) did not change in

comparison to the model without stochastic dispersal, but

remained at 0 (Table 4). Here, all estimated probabilities were

low (< 0.2), and the model was unable to discriminate between

true invasions and false alarms (AUC = 0.43, P = 0.78).

Spatial patterns of predicted establishment with Lake

Ontario as the single source (Fig. 4d–f) are almost identical

to the scenario with 11 lakes as sources (Fig. 4a–c). In the

baseline models for both scenarios (Fig. 4a,d), a similar region

of moderate probability of invasion (0.21–0.40) formed

around the Finger Lakes. However, in the Lake Ontario

scenario, lakes within this cluster were not at as a high a risk of

invasion as in the 11 source lake scenario. One notable

difference between the two scenarios is that small clusters of

high and moderate risk areas in eastern New York State are

contiguous in the 11 lake scenario at upper 95% PI (Fig. 4b,c),

but are more isolated when only Lake Ontario is considered as

single source (Fig. 4e,f) because of lower levels of propagule

pressure. In other words, propagule flow from Lake Ontario is

sufficient to create potential satellite colonies, but additional

propagule flow from the Finger Lakes may allow for infilling of

the satellite colonies.

DISCUSSION

Multi-stage invasion models are a useful approach to imple-

menting the invasion sequence conceptual model because they

allow us to identify factors that limit or facilitate invasions at

different stages of the sequence and provide flexibility in

choosing suitable sub-models appropriate to the biology of the

organism. In particular, estimating factors that influence

dispersal of NIS is the significant first step in risk management

because preventative measures are most readily applied at the

introduction stage of the invasion sequence (Lodge et al.,

2006). In this paper, we developed stochastic gravity and
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Figure 3 Empirical receiver operating characteristic curves for

means and upper 95% PI for establishment probability excluding

and including stochastic variation from the dispersal model.

Establishment probability was estimated based on model valida-

tion sub-samples. (a) and (b) represent the scenarios of 11 lakes

and Lake Ontario as sources, respectively.
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logistic establishment models to forecast spread of an aquatic

NIS. Because we used a stochastic form of the gravity model,

we were able to propagate variability from early stages of the

invasion sequence to final predictions of spread.

The use of stochastic gravity models to model recreational

traffic has some statistical advantages over deterministic

approaches. First, stochastic gravity models require specifying

a probability distribution about the probability of individual

trips being made between sources and destinations, as opposed

to deterministic models that model mean interaction traffic

and assume a probability distribution about residual variability

during the model fitting process. By specifying an appropriate

trip distribution – such as Poisson or NB if the number of trips

is being modelled – estimated traffic would be less biased than

if an incorrect distribution was assumed (Flowerdew & Aitkin,

1982). Further, with these discrete distributions, cases where

there are zero trips between a source and destination may be

modelled explicitly instead of excluding them from the

analysis. In other words, stochastic models based on discrete

distributions are likely to perform better at smaller sample

sizes. Finally, stochastic models that are fitted using maximum-

likelihood estimation allow for statistical testing of hypotheses

surrounding the number of trips through the use of likelihood

ratio tests or information-theoretic approaches such as

Akaike’s Information Criterion.

Invasions are ultimately stochastic processes, and even in

strictly controlled experiments (e.g. Melbourne & Hastings,

2009), stochasticity will limit our ability to make predictions

about invasion dynamics. However, an assessment of various

sources of uncertainty in model predictions is useful. In this

study, a comparison of model predictions among baseline

models, and models including and excluding stochastic

variability from earlier stages of the model, in addition to

predicting spread under different scenarios, permits us to

assess contributions of different sources of uncertainty in final

predictions of establishment.

Uncertainty inherent in model parameterization may be

considered as a key source of variability. Parameterization

uncertainty was tested by comparing model predictions from

the best-fit or baseline model, to the 95% prediction limits

defined by the 95% confidence limits of the fitted parameters.

Here, we consider this an evaluation of the input variables’

statistical uncertainty, defined as uncertainty that may be

described in statistical terms as deviations in the variables or

parameters from the true value (Walker et al., 2003). In our

model, the high increase in false alarm rates (Table 4) and

overly inclusive predicted area of establishment at the upper

95% prediction limit (Fig. 4) indicates that statistical uncer-

tainty is a major source of uncertainty. That is, modest changes

in the fitted parameters result in an overestimation of

probabilities of establishment resulting in increased false

alarms. Statistical uncertainty in models of predicted spread

may be reduced through increased data collection to develop

stronger model discriminators between invaded and non-

invaded habitats.

Stochastic variability of model inputs can also be described

as statistical uncertainty because it addresses whether the data

set captures the true variability in the population. The decrease

in false alarm rate at the upper 95% PI when stochasticity was

propagated relative to the model without stochasticity indi-

cates that accounting for sources of uncertainty is not as

critical as addressing uncertainty inherent in the model.

Nevertheless, we recommend the inclusion of stochastic

variability in model inputs because estimated areas of spread

were lower than the upper 95% PI of the model without

propagated error. This reduced area of spread when stochastic

input variables were included is consistent with population

spread models of Clark et al. (2001), where propagated

variability in the net reproduction rate, R0, resulted in lower

rates of forest spread.

A comparison of predictions in spread under the two

scenarios with Lake Ontario only and 11 invaded lakes as

Table 4 Predicted [baseline and 95% prediction intervals (PI)] and observed invasion status for 871 destination lakes under scenarios with

11 lakes or only Lake Ontario as a source.

Prediction scenario

Pred. 0,

Obs. 0

Pred. 0,

Obs. 1

Pred. 1,

Obs. 0

Pred. 1

Obs. 1

Hit

rate

False

alarm

rate

Overall

per cent

correct

11 source lakes 834 0 26 11 1.00 0.03 0.97

11 source lakes, lower 95% PI 860 11 0 0 0.00 0.00 0.99

11 source lakes, upper 95% PI 0 0 860 11 1.00 1.00 0.01

11 source lakes, stochastic variability, lower 95% PI 860 11 0 0 0.00 0.00 0.99

11 source lakes, stochastic variability, upper 95% PI 182 0 678 11 1.00 0.78 0.22

Lake Ontario 834 1 26 9 0.9 0.03 0.97

Lake Ontario, lower 95% PI 860 10 0 0 0.00 0.00 0.99

Lake Ontario, upper 95% PI 1 0 859 10 1.00 1.00 0.01

Lake Ontario, stochastic variability, lower 95% PI 859 10 1 0 0.00 0.001 0.99

Lake Ontario, stochastic variability, upper 95% PI 532 0 328 10 1.00 0.38 0.62

Optimal probability thresholds above which lakes are classified as susceptible to invasion are P = 0.010 for the 11 lakes scenario and P = 0.013 for the

Lake Ontario scenario calculated from the baseline establishment models. Invasion status is abbreviated as 1 = Present and 0 = Absent.
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sources addresses the issue of scenario uncertainty frequently

used in policy analysis (Walker et al., 2003). Scenario uncer-

tainty involves uncertainty in how the system and processes

driving the system may develop through time and reflects

alternative outcomes or conditions. In the context of this

study, we are comparing two invasion trajectories about

Cross Lake

Keuka Lake

Otisco LakeOwasco Lake

Cayuga Lake

Seneca Lake

Lake Ontario

Onondaga Lake

Skaneateles Lake
Canandaigua Lake

Cross Lake

Keuka Lake

Otisco LakeOwasco Lake

Cayuga Lake

Seneca Lake

Lake Ontario

Onondaga Lake

Skaneateles Lake
Canandaigua Lake

Cross Lake

Keuka Lake

Otisco LakeOwasco Lake

Cayuga Lake

Seneca Lake

Lake Ontario

Onondaga Lake

Skaneateles Lake
Canandaigua Lake

P(establishment) 97.5% PI
Stochastic dispersal included

0 – 0.20
0.21 – 0.40
0.41 – 0.60
0.61 – 0.80
0.81 – 1.00

Invaded lakes
Legend

P(establishment)

P(establishment) (a) (d)

(b) (e)

(c) (f)

P(establishment) 97.5% PI
No stochastic dispersal  

P(establishment) 97.5% PI
No stochastic dispersal  

P(establishment) 97.5% PI
Stochastic dispersal included

Cross Lake

Keuka Lake

Otisco LakeOwasco Lake

Cayuga Lake

Seneca Lake

Lake Ontario

Onondaga Lake

Skaneateles Lake
Canandaigua Lake

Cross Lake

Keuka Lake

Otisco LakeOwasco Lake

Cayuga Lake

Seneca Lake

Lake Ontario

Onondaga Lake

Skaneateles Lake
Canandaigua Lake

Cross Lake

Keuka Lake

Otisco LakeOwasco Lake

Cayuga Lake

Seneca Lake

Lake Ontario

Onondaga Lake

Skaneateles Lake
Canandaigua Lake

0 20 40 60 8010
km

0 20 40 60 8010
km

0 20 40 60 8010
km

0 20 40 60 8010
km

0 20 40 60 8010
km

0 20 4010
km

60 80
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outbound propagule flow. The nearly identical patterns of

spread under the two scenarios indicate that Lake Ontario is a

major driving force in Cercopagis expansion because it is

present in both scenarios and thus may serve as a ‘hub’ for

future expansion across a network of invaded lakes connected

by boater traffic (see Muirhead & MacIsaac, 2005).

Finally, one source of variability that our model does not

contain is stochasticity present in local population growth over

time. As time progresses, stochastic population growth may

increase the probability of lake becoming a future source for

invasions if the population is likely to expand faster than

decreasing below a threshold where the population is likely to

collapse or experience Allee effects (e.g., Drake & Lodge, 2006).

That is, there is likely a greater chance of propagules being

transported away from the lake depending on the source

population size, although this relationship is difficult to

quantify. To develop a complete population spread model

based on the invasion sequence, population estimates of the

NIS are required but are unfeasible for planktonic species.

The combination of propagule pressure and habitat suit-

ability in determining establishment success for Cercopagis is

similar for other zooplankton species. In particular, Cercopagis

is more likely to found in larger, clear lakes (i.e. low turbidity)

with high propagule inflow from human-mediated dispersal,

similar to the confamilial Bythotrephes longimanus. European

and North American lakes that support Bythotrephes have

significantly greater surface area and are deeper and more

transparent than those in which it is absent (MacIsaac et al.,

2000; Branstrator et al., 2006; Weisz & Yan, 2010). In both the

dispersal and establishment models for Cercopagis, the likeli-

hood of travelling between two lakes (estimate of zero-

inflation), as well as the probability of establishment,

increased with increasing lake area. Lake area may be an

indication of subjective attractiveness for recreationalists

because it has been shown to be positively related to the

probability of making a trip to that lake (Siderelis & Moore,

1998) as well as the average amount of boater traffic on a lake

(Reed-Andersen et al., 2000). In terms of Cercopagis estab-

lishment, lake area may influence habitat diversity, availability

of refuge from fish predators and, consequently, population

size of the NIS. Finally, SC may not have a direct impact on

Cercopagis establishment, but it is an indicator of lake position

in a watershed. Lakes that are larger, deeper and at lower

elevations tend to have higher SC. In a zooplankton commu-

nity analysis for Wisconsin lakes, Dodson et al. (2009) found

that larger zooplankton species were found in these larger

lakes.

The clustering of inland lakes invaded by Cercopagis is

limited to the Finger Lakes region and raises a key question of

why Cercopagis has not spread like Bythotrephes, despite ample

time to do so. Cercopagis displays many of the life-history and

physiological traits expected to confer an advantage in

colonizing populations. For example, Cercopagis frequently

has greater absolute abundance and fecundity, and thus we

expect higher number of Cercopagis propagules based on

relative abundance (Makarewicz et al., 2001, Yan et al., 2001).

One possibility of why Cercopagis has not spread extensively

involves the timing of production of resting stages relative to

seasonal patterns of recreational boat traffic. Like many

cladocerans, Cercopagis produces gametogenic resting eggs

that are likely the life stage to survive dispersal among lakes.

Whereas recreational boating traffic occurs predominantly

between May and early September, peak abundance of

Cercopagis females with resting stages does not occur until

mid-August in Lake Ontario (Makarewicz et al., 2001) and late

September in the Baltic Sea (Gorokhova et al., 2000). Seasonal

recreational boating activity is declining at this time, thereby

reducing the likelihood of human-mediated species dispersal.

Allocation of sampling effort and optimum control to

detect and contain spread

The spatial pattern of lakes at high risk of invasion by

Cercopagis has implications on whether to allocate more effort

to sampling and detecting new invasions versus controlling

secondary spread. In terms of sampling effort to detect new

invasions, risk maps allow the identification of invasion

‘hotspots’ where sampling can be prioritized to increase

detection sensitivity for low population sizes. For example, in

a survey for Cercopagis in Lake Ontario by Harvey et al. (2009),

the probability of detecting the species was greater for targeted

spatial arrangement of samples rather than lower-effort

sampling over a great area when population densities were

low. Based on our simulations, areas at high risk of Cercopagis

invasion in New York State are primarily concentrated around

a cluster of lakes that are currently invaded, although there

exist several high-risk areas surrounding this cluster that

currently are not invaded. If large volumes of recreational

boating traffic depart from these high-risk areas, effort to

detect new invasions should be focused on these potential

satellite colonies rather than sampling for lakes proximal to

those already invaded because satellite colonies may increase

the overall rate of spread by exceeding that of the central core

of the invasion (Moody & Mack, 1988; Blackwood et al.,

2010).

Alternatively, if management effort is targeted towards

limiting secondary spread, the optimal solution is contingent

on the spatial configuration of the invasion, rates of spread and

control strategies. Despite a relatively long time since its

introduction into the Great Lakes, Cercopagis has not spread in

New York State at the rate or geographic extent of Bythotrephes

in Ontario (Muirhead & MacIsaac, 2005; Weisz & Yan, 2010).

Although eradication seems unfeasible for planktonic species

such as Cercopagis, an optimal strategy of ‘slow the spread’

based on creating barriers to dispersal is recommended because

the area currently invaded is limited (Sharov, 2004). In

instances where the invasible habitat is not homogenous, but is

distributed in patches such as lakes, the optimal control

strategy is to limit the amount of propagule dispersal among

patches. Here, the spatial arrangement of patches has impli-

cations on where management efforts to control spread should

be applied. For example, in an optimal model for zebra mussel

Prediction and error in multi-stage models
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spread, Potapov & Lewis (2008) show that disrupting the flow

between clusters of lakes by washing trailered boats is preferred

over disrupting propagule transfer within a cluster. Similarly, if

we consider propagule dispersal between invaded sources and

destinations as a source-sink model, Travis & Park (2004)

illustrate how the optimal control strategy for overall popu-

lation size does not always involve reductions in the source (i.e.

invaded) habitat, but is strongly influenced by the level of

dispersal and the strength of population decline in the sink

habitat. In situations where density-dependent dispersal is low,

as is often the case in invasions, they suggest a dynamic strategy

where eradication effort switches between sources and sinks as

opposed to splitting effort between the two. However, if a

species exhibits high density-dependent dispersal, reducing the

source population will be the most effective strategy. For

planktonic NIS such as Cercopagis, management options may

include education of recreationalists through awareness of

invaded lakes in the Finger Lakes region; inspecting fishing

lines or water-based vectors such as bait buckets, live wells or

bilge water for animals; and washing boats and trailers after

emerging from invaded lakes. Commercial solutions such as

the development of fishing lines that prevent Cercopagis

attachment may prove highly effective (Jacobs & MacIsaac,

2007).

Hierarchical approach to modelling invasions

The utility of combining stochastic dispersal and establishment

models in a hierarchical approach provides a flexible frame-

work to address a wide range of hypotheses in invasion

biology. While we focus on aquatic NIS, the same approach

could be used to assess the spread of terrestrial species. For

example, stochasticity in wind currents affecting seed dispersal

of plants or insect dispersal may be propagated into spatially

and temporally explicit establishment models based on local

environmental conditions. In a series of individual-based

models for Rhododendron spread, Harris et al. (2009) show

how differences between minimum and maximum reported

wind speed can halve the time for seedlings to establish outside

quarantine zones. Further, the authors were able to make

recommendations on optimal control measures based on these

simulations of stochastic dispersal of seedlings and age-

dependent seed production.

The hierarchical approach also allows for testing multiple

dispersal pathways. Pathways may be modelled separately and

subsequently used as independent predictors in a combined

establishment model allowing us to test hypotheses of human-

mediated versus natural dispersal. Variability in each of the

pathways may be propagated through the establishment model

to assess how uncertainty in each of the pathways can influence

predicted rates of spread. Alternatively, comparisons of

dispersal kernels derived for multiple pathways may be

compared to observed patterns of spread to identify relative

importance. For example, Wichmann et al. (2009) compared

dispersal kernels derived from stochastic simulations of wind-

mediated seed movement for black mustard (Brassica nigra)

plants to human-mediated dispersal obtained from field

experiments. Their results suggest that human-mediated

dispersal is the primary pathway for observed long-distance

dispersal. As a consequence, managed reductions in propagule

supply transported over long distances may reduce the chance

of establishing satellite colonies (Hulme, 2003).

In conclusion, models developed here address factors that

influence human-mediated propagule pressure and establish-

ment for the non-indigenous zooplankter Cercopagis pengoi

following a conceptual model of the invasion sequence. Lake

area, travel costs and population sizes were significantly related

to the amount of boat traffic between lakes; in turn, boat

traffic, lake area, SC and TB were significant predictors of

Cercopagis establishment. This study highlights how propagat-

ing stochasticity associated with dispersal throughout the

invasion sequence reduces the rate of detecting false alarms for

predicted spread.
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Wilson, J.R.U. (2006) Interactions between environment,

species traits, and human uses describe patterns of plant

invasions. Ecology, 87, 1755–1769.

Travis, J.M.J. & Park, K.J. (2004) Spatial structure and the

control of invasive alien species. Animal Conservation, 7,

321–330.

Von Holle, B. & Simberloff, D. (2005) Ecological resistance to

biological invasion overwhelmed by propagule pressure.

Ecology, 86, 3212–3218.
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