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A B S T R A C T   

Mosquito borne diseases (MBD) are a major global health concern. To aid MBD management efforts, the dis
tribution of mosquito species is frequently investigated through species distribution models (SDMs). However, 
the quality these SDMs for management use has not been examined. We evaluated 127 publications of mosquito 
SDMs published between 1998 and 2020 and assessed each against a set of recently-developed, best-practice 
standards pertaining to quality of the response variable, predictor variables, model building, and model evalu
ation aspects. Mosquito SDMs were predominantly trained with presence-background response variables (77% of 
studies), bioclimatic predictor variables (39-63%), maximum entropy algorithm (54%), and evaluated by area 
under the receiver operating curve (36%) or confusion matrix metrics (34%). Aedes were the best-studied genus 
(70 studies). Pan-African (20%) and global (16%) distribution studies dominated. All published studies had one 
or more unacceptable standards within considered aspects, but no aspect observed unacceptable standards in all 
publications. The highest proportion of unacceptable standards were observed within predictor variables (60%), 
followed by model building (53%), model evaluation (34%), and response variable (17%). Response variable and 
model building demonstrated 8% and 0.2% increases in quality over time, but predictor variables and model 
evaluation exhibited 6% and 2% decreases in quality, respectively. Quality of mosquito SDMs has not changed 
since introduction of best practice standards. Quality of mosquito SDMs can be improved by ensuring known 
species temperature and precipitation thresholds are represented within the response variable. Resolution of 
predictor variables must be justified from ecological knowledge or statistically approximated. SDMs of 
mosquitoes require improved evaluation against independent data or creation of geographically-structured data. 
We encourage future mosquito SDM applications to utilize the most recent SDM standards and recommendations 
to improve applicability.   

1. Introduction 

Transmission of diseases by mosquitoes is of global health impor
tance. Mosquito-borne diseases (MBD) cause over one million deaths 
and suffering for hundreds of millions more people annually (Caraballo 
and King, 2014). MBDs include dengue, zika, yellow fever, and chi
kungunya vectored by Aedes aegypti and Aedes albopictus, malaria 
vectored by Anopheles spp. and Japanese encephalitis and West Nile 
fever by Culex spp. (Calvo et al., 2016; Yang et al., 2018). Estimates 
suggest that half of the world’s population will be at risk of MBD by 2050 
(Kraemer et al., 2019). Reducing the public health burden of MBD 
mainly focuses on understanding and determining areas vulnerable to 

mosquito colonization (Jones et al., 2021). Species distribution models 
(SDMs) - also known as ecological niche models - have been widely 
implemented to anticipate disease introduction and spread (Escobar, 
2020). SDMs relate the presence, absence, or abundance of a species or 
disease with environmental conditions to generate hypotheses about a 
species’ potential distribution, thereby improving traditional disease 
risk maps (Escobar and Craft, 2016). 

Despite their popularity, SDMs have been criticized owing to their 
assumptions, sensitivity to input data, and methodology choices (Araújo 
and Peterson, 2012; Sofaer et al., 2019). These sensitivities relate to the 
response variable selected, predictor variables used, model building, or 
model evaluation considerations (Jarnevich et al., 2015; Araújo et al., 
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2019). The response variable is the primary building block of SDMs, 
defining the geographic, environmental, and temporal conditions in 
which species are presumed present or absent (i.e. occurrence records) 
(Guisan and Zimmermann, 2000). Predictor variables considered in 
SDMs dictate the species-environment relationships considered to 
explain, predict, or project a species’ distribution. Model building details 
fitting a statistical relationship between the response variable and pre
dictor variables. Model evaluation details the criteria for assessing SDM 
realism, accuracy, and generality. For example, response variables are 
often limited to publicly accessible areas, introducing sampling bias 
(Champan et al., 2019; Jarnevich et al., 2015); . Bystriakova et al. 
(2012) calibrated SDMs for five fern species with and without ac
counting for sampling bias. SDMs that did not account for sampling bias 
poorly estimated species occurrence with broader environmental niches 
(Bystriakova et al., 2012). 

Previous authors sought to address these concerns by providing a 
step-by-step guide (Sillero et al., 2021), reproducibility methodology 
checklists (Feng et al., 2019; Zurell et al., 2020), and assessment 
frameworks (Araújo et al., 2019; Sofaer et al. 2019) for SDMs. Recently 
there has been an increase in deterring limitations of specific SDM ap
plications (e.g. Silva et al., 2019). However, current research has not 
identified SDM limitations on public health, epidemiology, or MBD. 
Given the interest and application of SDMs to mosquitoes, an assessment 
of constraints and suggested best practices is warranted. The general 
application and limitations of SDMs concerning epidemiology have been 
reviewed (Johnson et al., 2019; Escobar, 2020). Response data repre
sented by vector occurrence is preferred over disease occurrence to 
minimize spatial uncertainty (Johnson et al., 2019). However, lattices 
often represent vector or disease responses. Lattice responses detail a 
landscape that has been divided into equal (i.e. UTM grid) or 
unequal-sized subunits (i.e. geopolitical region; Saveliev et al., 2007). 

Interpreting ecological characteristics within a lattice may bias re
sults by failing to sufficiently represent the species-environment 
response (Moudrý et al., 2019; Cheng et al., 2021). A species’ natural 
dispersal range provides an approximate scale of the 
species-environment responses (Jackson and Fahrig, 2015). Verdon
schot and Besse-Lotoskaya (2014) reviewed mosquito flight literature. 
They found that 91 mosquito species demonstrated average flight ranges 
of less than 2 km, except for three Culiseta species and Culex annulirostris, 
which could fly 4.5 and 6.2 km, respectively (Verdonschot and Besse-
Lotoskaya, 2014). Predictor resolution must match the size of each 
corresponding lattice cell to limit spatial uncertainty (Vergara et al., 
2016). Yet, accounting for the lattices risks additional statistical bias to 
the model (Openshaw, 1981) unless it reflects ecologically important 
ecological zones or the interested level of effect (e.g. García-Carrasco 
et al., 2021). For example, Johnson et al. (2017) applied contiguous 
United States county latticed responses and environmental averages to 
predict county-level suitability of A. aegypti and A. albopictus distribu
tions. Though counties in the United States are vastly more extensive 
than the natural dispersal range of mosquitoes, the occurrences were 
appropriately considered within the objective and SDM methodology. 
Further, use of lattice scales allowed Johnson et al. (2017) to assess the 
dispersal capacity of A. aegypti and A. albopictus populations as opposed 
to individuals. In contrast, Miller et al. (2012) estimated the distribution 
of Japanese Encephalitis in Asia given administrative district Culex tri
taeniorhynchus occurrences with 1 km2 resolution predictors. Their 
selected resolution more closely reflected the expected 
species-environment response, but the resulting SDMs did not account 
for the spatial accuracy of each occurrence. Consequently, the inter
preted species-environmental response was calibrated from inaccurate 
values, limiting model reliability, the results, and the application. 

Although mosquito response variables have been investigated, 
consideration of other SDM aspects of predictor variables, model 
building, and model evaluation are limited. These aspects have not been 
examined or reviewed for mosquito SDMs. Instead, methodology de
cisions rely on more general SDM reviews (e.g. Elith et al., 2006). 

Recently, Araújo et al. (2019) and Sofaer et al. (2019) proposed 
assessment frameworks of SDMs’ applicability and utility, respectively. 
Both focused on SDM aspects of response variable, predictor variables, 
model building, and model evaluation procedures to guide 
higher-quality SDMs and corresponding applications. However, Araújo 
et al. (2019) provided a more in-depth assessment framework which 
evaluated SDMs concerning their objective and use(s); explanation, 
prediction, or projection. The standards by Araújo et al. (2019) reflect 
15 issues across the four SDM aspects per use. Each issue and use was 
scored regarding quality: gold, silver, bronze, or deficient. Araújo et al. 
(2019) applied these standards to assess 400 SDM publications between 
1995 and 2015 and reported that most aspects of SDMs had improved 
over time. Arthropods - including mosquitoes - accounted for approxi
mately 5% of studied cases (Araújo et al., 2019). Assessing published 
mosquito SDMs against these standards allows for an examination of 
their adherence to these quality standards. It is important to note that an 
SDM’s validity is evaluated for its designed purpose and is not univer
sally valid or invalid (Araújo et al., 2019). 

Here, we investigate mosquito SDM quality based on the four SDM 
aspects identified by Araújo et al. (2019). From our literature review, we 
sought to i) determine the uses of SDMs applied to mosquitoes; ii) assess 
areas of MBD concern; iii) assess mosquito SDMs against the four aspects 
outlined by Araújo et al.’s (2019) standards; iv) assess mosquito SDM 
quality over time; and v) propose recommendations for best practice. We 
do not intend to reiterate caveats and guidelines standards across SDM 
literature but focus on those specific to mosquito applications. We 
compare our results to Araújo et al. (2019) to identify which issues are 
particularly problematic to mosquito SDMs. 

2. Methods 

2.1. Literature review 

We searched the literature to identify SDM publications applied to 
mosquito species published between 1995 and 2020. Specifically, we 
queried Web of Science (apps.webofknowledge.com), Scopus (www. 
elsevier.com/solutions/scopus), Pubmed (www.ncbi.nlm.nih.gov/ 
pubmed/), and Scientific Electronic Library Online (www.scielo.org) 
with the search terms “species distribut*” OR “habitat distribut*" OR 
"climat* envelope" OR bioclimat* OR "habitat suitab*" OR niche OR 
"resource selection" OR SDM OR ENM OR BEM OR BCM OR HSM OR RSF 
AND model* AND vector OR disease (last accessed May 16, 2021). This 
search returned 4,441 unique publications. We refined the initial pub
lications to focus on only those that applied or investigated SDMs of 
mosquitoes and omitted mechanistic models or application of MBD 
rather than species occurrence, resulting in 127 retained publications. 

2.2. Assessment of SDM standards 

We reviewed the selected publications according to the best-practice 
standards for models in biodiversity assessments (Araújo et al., 2019). 
We provide a summary of the standards below, though full details are 
found in Araújo et al. (2019). The standards consist of four quality 
levels: gold, silver, bronze, and deficient. Gold represents aspirational 
methods that usually require ideal data and next-generation modeling 
approaches which are seldom available and remain under development, 
respectively. Silver corresponds to cutting-edge techniques, typically 
involving imperfect but best available data. Bronze standards represent 
the minimum acceptable practices for SDMs. Finally, deficient standards 
indicate unacceptable practices to drive policy and practice (Araújo 
et al., 2019). 

SDMs may be applied to investigate a wide range of ecological sit
uations (Aguirre-Gutiérrez et al., 2013; Sillero et al. 2021). We reviewed 
and evaluated SDMs to determine their use and objectives. For example, 
prediction of disease prevalence to aid public health initiatives (Dicko 
et al., 2014), determining areas suitable for species conservation (Regos 
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et al., 2021), or analyzing invasive species niche conservation (Medley 
2010). Therefore, we assessed SDM quality for the general uses of 
explanation, prediction, and projection for consistency and simplicity. 
Standards scoring reflected three to five issues per SDM aspect: response 
variable, predictor variables, model building, and model evaluation 
(Table 1) 

Response variable quality was strongly related to human effort, 
specifically sampling effort. The sampling effort reflected the depth of 
survey design to encompass all locations and environmental conditions 
within the taxon range, identification of taxon, and quantification of 
spatial accuracy of resulting occurrence records for the study objective 
(Araújo et al., 2019). Inaccuracies or bias within any part of the sam
pling effort can potentially limit SDM ability (Anderson, 2012). Though 
primary field surveys provide more reliable and accurate occurrence 
records, many rely on records from heterogeneous sources, such as 
occurrence repositories (i.e. Global Biodiversity Information Facility, 
www.gbif.org). Response variable quality also considered the depth that 
studies cleaned heterogeneous data to remove records within justified 
unreasonable locations, conditions, positional accuracy, and taxonomic 
identification (Araújo et al., 2019). We characterized the spatial accu
racy of responses as assumed or known to represent a precise location (i. 
e. latitude and longitude from field survey), latticed points, or a com
bination thereof. 

The quality of predictor variables corresponded to the depth that the 
predictors were identified, acquired, prepared, and selected related to 
study objectives and species’ biology. We assessed the evidence or 
justification for predictor selection and preparation concerning biolog
ical response and spatial and temporal resolution of the response vari
able (Araújo et al., 2019). Ideally, predictors represent conditions that 
the response variable is dependent at a relevant spatial and temporal 
resolution with any uncertainty (i.e. measurement error) quantifiable in 
the final SDM. Further, SDMs are applied to determine which predictor 
limit a species’ distribution, often referred to as variable importance 
(Bardie and Leung, 2017). If SDMs identified variables of importance - 
also referred to as high contributing or demonstrated a significant effect 
– we recorded the corresponding variables identified as important per 
species. As variable importance estimates vary by algorithm and 
assessment method (Smith and Santos, 2020; Harisena et al., 2021), 
whether a variable was considered important or not was based on the 
original authors’ interpretation. Given the various predictors applied, 
we grouped similar and less common predictors when considering 

overall importance. For example, temperature may be represented by 
minimum, maximum, mean, or median air or land surface temperature 
per month(s). If less than three publications applied a specific predictor, 
it was considered an “other” predictor (i.e. other temperature). 

Model building quality represents the degree of SDM techniques that 
addressed issues of model complexity, bias, noise, collinearity, and un
certainty with respect to the study’s objective (Araújo et al., 2019). 
Proper model building consisted of evaluating sequences of all choices, 
including algorithm, hyper-parameters, and the number of predictors to 
prevent overfitting and adjust for characteristics of response data. 
Comparison of all sequences allows for quantification and mapping 
uncertainty among model building choices. Failure to properly account 
for bias, noise, or collinearity can cause erroneous results (Dormann 
et al., 2013; Bailey et al., 2014). 

Model evaluation was related to the quality of the methodology used 
to assess the realism, accuracy, and generality of model outputs per 
model use for an objective (Araújo et al., 2019). SDMs are expected to 
approximate ecological reality and should be evaluated against data 
representative of the response variable’s spatial, temporal, and envi
ronmental distributions. Model evaluation assessment included consid
ering the depth to which authors assessed theoretical and statistical 
assumptions of SDMs, the selection of evaluation data, and the mean
ingful evaluation metrics used. Ideally, SDMs were evaluated against 
multiple lines of evidence with no assumptions violated (Araújo et al., 
2019). Unreliable or inflated results are possible if SDMs violate as
sumptions or are evaluated against biased data (Guisan and Zimmer
mann, 2000; Hijmans, 2012). 

Reproducibility remains an issue across science (Baker, 2006). The 
lack of transparent methodology within SDM publications may have 
inhibited quality assessments. To address this, we evaluated the repro
ducibility of mosquito SDMs according to Feng et al. (2021) to com
plement the quality assessment. Feng et al. (2019) outlined a checklist of 
the minimum information essential for SDM reproducibility. This 
checklist reflects the framework of Araújo et al. (2019), with nine, four, 
seven, and 12 necessary information related to the response variable, 
predictor variables, model building, and model evaluation, respectively 
(Feng et al., 2019). SDMs were assigned a binary score if the repro
ducible element was provided or not. Full details on the checklist are 
available in Feng et al. (2019). 

Table 1. 
Standards for distribution models in biodiversity assessments from Araújo et al. (2019) and percent of observed quality levels per issue and aspect across 127 pub
lications. Total percentages indicate the percent of each quality level for all issues per aspect. Standards levels of deficient, bronze, silver, and gold represent unac
ceptable, acceptable, cutting-edge, and aspiration quality, respectively.  

Aspect Code Issue Deficient Bronze Silver Gold 

1. Response 
variable 

1.A Sampling of response variables 14 62 22 2 
1.B Identification of taxa 28 57 13 2 
1.C Spatial accuracy of response variable 13 37 24 26 
1.D Environmental extent across which response variable is sampled 20 79 1 0 
1.E Geographic extent across which response variable is sampled (included occurrence data and absence, 

pseudo-absence, or background data) 
9 46 44 1  

Total  17 56 21 6 
2. Predictor 

variables 
2.A Selection of candidate variables 24 62 12 2 
2.B Spatial and temporal resolution of predictor variables 76 24 2 0 
2.C Uncertainty in predictor variables (both under current and projected conditions) 83 14 4 0  
Total  60 33 6 1 

3. Model building 3.A Model complexity 59 20 21 0 
3.B Treatment of bias and noise in response variables 48 31 21 0 
3.C Treatment of collinearity 53 45 1 1 
3.D Dealing with modelling and parameter uncertainty 51 48 1 0  
Total  53 36 11 0 

4. Model 
evaluation 

4.A Evaluation of model assumptions 68 31 1 0 
4.B Evaluation of model outputs 17 74 5 3 
4.C Measure of model performance 16 76 8 0  
Total  34 61 5 1 

All aspects Total  38 47 12 3  
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2.3. Analysis 

We assessed the geographic areas investigated per mosquito genus to 
determine regions of MBD concern. To do this, we considered the 
country or countries in which each publication applied an SDM. We 
presented genera at the continent level, excluding global applications. 
Total publications per country were mapped in ArcGIS 10.8.1 (Envi
ronmental Systems Research Institute (Esri) 2018). 

We evaluated SDM quality scores concerning 50% and 90% quantile 
scores per issue. The 50% and 90% quantiles represent the 50% and 90% 
levels on an ascending list of quality, respectively. We quantified overall 
performance per aspect (Table 1) by the ‘area inside the line’ measure, a 
metric that reaches 100% if all standard issues reach gold for all studies 
at or above the given quantile (Araújo et al., 2019). Area inside the line 
was determined for each quantile line per aspect within a polar coor
dinate system such that area increased with higher quality scores 
(Fig. 3). 

We fitted an ordinal regression with a Bayesian approach to deter
mine the change in mosquito SDM quality over time rstanarm package in 
R v4.1.1 (Goodrich et al., 2020; R Core Team, 2021). We calibrated the 
ordinal regression with a warm-up of 1000 iterations followed by four 
chains with 5000 iterations sampled with an assumed prior distribution 
between -1000 and 1000. Regression models were fitted against an 
interaction of year and aspect. Additionally, a similar model fitted with 
an interaction of year and issue was determined (Table 1). We inter
preted the estimates obtained by this analysis as the change in the 
quality over time. 

We determined the presence of temporal trends since the establish
ment of Araújo et al.’s (2019) standards by comparing quality up to and 
including 2019 (before, 114 publications) to 2020 onwards (after, 13 
publications). We evaluated the independence of scores before and after 
the release of standards by Fisher’s exact test of independence on the 
expected proportion of each score per issue published before or after 
SDM standards (Table 2). Expected proportions reflect the average count 
of each score across all 15 issues per period. 

3. Results 

3.1. Literature review 

A total of 116 species from Aedes, Anopheles, Culex, Ochlerotatus, 
Culiseta, Haemagogus, and Psorophora genera were investigated using 
SDMs. Species of most interest included A. aegypti, A. albopictus, Culex 
pipiens, Anopheles gambie, and Anopheles aradiensis were investigated by 
44, 36, 19, 15, and 14 publications, respectively (Supplementary ma
terial 1: Table S1). Prediction and explanation were the most common 
uses of SDMs (40% of cases), followed by prediction only (27%) 
(Fig. 1a). Seventy-four percent of studies used presence-background as 
the response variable, while a further 4%, 17%, and 6% utilized 
presence-only, presence-absence, or species abundance data, respec
tively. Assumed precise locations provided the response variable for 
61% of cases, while latticed or a combination of occurrence types were 
used by 15% and 17%, respectively (Fig. 1b). The response variable was 

represented by primary field collections for 39% of publications, while 
61% relied on information from the literature, occurrence repositories, 
or multiple sources. 

Bioclimatic variables (Supplementary material 1: Table S2) were the 
most applied predictors (39-63%), followed by elevation (59%) and 
urban land cover (35%) (Fig. 1c). Slope, elevation, and agricultural land 
were the most important predictors in 53% or more of SDMs, though 
findings varied by mosquito species and genus (Supplementary material 
2). Most SDMs, 56%, were fit with predictors at a 1 km2 or finer reso
lution, followed by 35% with scales between 10 and 1000 km2 (Sup
plementary material 1: Fig. S1). 

The selected studies examined mosquito distributions with 23 SDM 
(Fig. 1d). Maximum entropy (MaxEnt) was most popular with 68 pub
lications, while generalized linear models, genetic algorithm for rule-set 
production, and generalized boosting methods were next and applied by 
18, 15, and 11 studies, respectively. Under ten publications applied the 
remaining 19 algorithms, with 12 algorithms used by a single publica
tion each (Fig. 1d). Model complexity was addressed within 40% of 
studies, particularly when MaxEnt (50% of cases) or ensemble (55%) 
were considered. 

Previous studies evaluated SDMs using various metrics, though 10% 
of publications did not provide any evaluation (Fig. 1e). Area under the 
receiver operating curve and subsampling of training data were applied 
by 60% and 73% to evaluate SDMs. Subsampled data relied on confusion 
matrix metrics (i.e. sensitivity, specificity) for 34% of all studies. 
Random hold-out methods (i.e. random split, cross-validation), inde
pendent, re-substitution, and geographically structured data were re
ported by 79%, 8%, 2%, and 1% of studies, respectively (Fig. 1e). 

3.2. Regions of SDM application 

Mosquito SDM literature focused on African (20% collectively), 
global (16%), the contiguous United States (12%), Italy (8%), and China 
(7%) forecasts. Within Africa, Kenya (12%) and Tanzania (10%) were 
the most-covered countries (Fig. 2a). The genera investigated varied by 
continent. Aedes spp. were studied extensively in the Americas, Europe, 
and globally, while Anopheles spp. models were confined mainly to Af
rican and Asian studies. Oceania had equal representation of Aedes and 
Anopheles spp. investigations (Fig. 2a). SDMs investigating Aedes spp. 
have increased rapidly in recent years, while those addressing Anopheles 
and Culex spp. remained relatively constant over time (Supplementary 
material 1: Fig. S2). 

3.3. Assessment of SDM standards 

All 127 publications observed at least one deficient standard (i.e. 
unacceptable practice) within a single aspect, but no aspect consistently 
implemented deficient practices in all publications. Accordingly, SDMs 
predominantly demonstrated deficient (38% of assessments) or bronze 
(47%) practices. Only 12% and 3% of SDMs applied silver and gold 
practices, respectively. Response variable, model building, and predic
tor variables observed higher proportions of silver or gold practices 
(Table 1). Specifically, 26% of SDMs applied gold standard spatial ac
curacy of the response variable, while sampling, taxonomic identifica
tion, and geographic extent of the response variable considerations were 
22%, 13%, and 44% silver quality, respectively. Within model building, 
examination of model complexity demonstrated silver quality by 21% of 
SDMs, and treatment of bias and noise by 21%. The selection of pre
dictor variables improved to silver and gold for 12% and 2% of all SDMs, 
respectively. Issues related to model evaluation observed silver or gold 
quality in less than 8% of SDMs. 

Overall performance - as defined by the area inside the curve (see 
methods) - revealed that response variables demonstrated the highest 
quality, with 16% and 52% of possible scores achieved by 50% and 90% 
quantiles, respectively (Fig. 3). Both predictor selection and model 
building were poor overall for 50% quantiles with only 4% area inside 

Table 2. 
Change in the average count of observed SDM qualities across all issues 
before and after the publication of best-practice standards in 2019. SDM 
quality was not dependent on time by Fischer’s exact test (p=0.88). 
Observed quality percentages per issue before and after are available in 
Supplementary material 1: Table S3.  

Quality Before After 

Deficient 6 4 
Bronze 7 9 
Silver 2 2 
Gold 0 0  
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the curve. Yet, at the 90% quantile predictor selection and model 
building increased to 19% and 29%, respectively. Model evaluation 
remained relatively similar between 50% and 90% quantiles, with 
overall scores of 8% and 12%, respectively (Fig. 3). 

When examining temporal quality change (via ordinal regression), 
we observed predominantly yearly quality deterioration (Fig. 4). 
Notably, procedures of predictor variables indicated a 6% yearly 
decrease in quality and 2% within model evaluation. Nevertheless, 
model evaluation indicated higher uncertainty within the 95% confi
dence interval. In contrast, response variables procedures indicated an 
8% yearly quality improvement. Model building showed a low tendency 
for improvement (0.2%) with high uncertainty. 

General trends of SDM aspects were inconsistent across issues, except 
within predictor variables (Fig. 4). Temporal trends of predictor vari
ables issues were consistently deteriorative but suggested improvement 
within the 95% confidence interval. The remaining SDM aspects indi
cated a near 50% split between yearly improvement and deterioration 
among issues. Response variable sampling and consideration of envi
ronmental and geographic extents improved yearly, but taxa identifi
cation and spatial accuracy decreased. Model building procedures 

related to collinearly, model and parameter uncertainty enhanced over 
time. However, addressing model complexity, bias and noise deterio
rated. Lastly, evaluation of model assumptions indicated a yearly in
crease in quality, but evaluation of model outputs and performance 
decreased (Fig. 4). All issues revealed wide intervals overlapping zero, 
indicating high uncertainty. Yet, the quality of mosquito SDMs was in
dependent of the publication of the standards (p=0.88; Table 2). 

3.4. Reproducibility 

Mosquito SDMs consistently reported the algorithm and source of the 
response variable (98% of studies each), modeling domain (97%), 
source of predictor variables (96%), resolution of predictor variables 
(91%), and temporal range of predictor variables applied for projection 
(85%) (Fig. 5). Elements with the least consistent reporting included 
download date or version of predictor variables used for projection 
(3%), methods to account for spatial autocorrelation (10%), sampling 
bias (15%), spatial/environmental outliers (17%) in response variables, 
the threshold of evaluation index (23%), and spatial resolution of pre
dictor variables used for projection (23%). Overall, no paper provided 

Fig. 1. Overview of mosquito SDM aspects across the literature. Summary of literature review including the purpose of study (a), response data type and reference of 
assumed or known precise location (i.e. latitude and longitude from field survey), latticed (i.e. records on a grid), or a combination of both (b), top 30 predictors 
considered and identified as important (c), algorithm considered with or without consideration of complexity (d), and evaluations considered (e). Numbers in (a) 
represent the percent of publications that considered each single or combined study purpose. Predictor abbreviations: NDVI= normalized difference vegetation index, 
TWI = topographical wetness index. SDM algorithm abbreviations; MaxEnt = Maximum entropy, GLM = generalized linear model, GARP = Genetic algorithm for 
rule-set production, GBM = generalized boosting method, RF = random forest, CTA = classification tree analysis, ENFA = ecological niche factor analysis, GLMM =
generalized linear mixed model, SRE = surface range envelope, GAM = general additive model. Other algorithms included Similarity search, alpha-shapes, learning 
approach for one-class classification, niche of occurrence, proportional, artificial neural networks, support vector machines, MaxLike, multiple adaptive regression 
splines, and undefined models. Evaluation metric abbreviations: AUC = area under the receiver operating curve, OR = omission rate, TSS = true skill statistic, TPR =
true positive rate (sensitivity), AIC = Akaike information criterion, CCR = correct classification rate, pROC = partial area under the receiver operating curve, R2 =
correlation, TNR = true negative rate (specificity), CR = commission error, RMSE = root mean square error, AVI = absolute validation index, CVI = contrast 
validation index, FNR = false-negative rate, FPR = false positive rate. Other evaluation metrics included Bernoulli deviance, error rate, and point biserial correlation. 

Fig. 2. Spatial publication trends. The number of publications investigating mosquito distribution through SDMs per country and genus representation (proportion) 
by continent. Publications that considered global distribution are shown by global proportion in the center. 
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all or no reproducible methods. SDMs of mosquitoes tended only to 
report 15 of 33 reproducible elements (45±13%; mean ± standard de
viation; Supplementary material 1; Fig. S7). Reporting of reproducibility 
was particularly limited within elements of the response variable and 
model evaluation, 39% and 35%, respectively. Predictor variables and 

model building indicated higher reproducibility with 66% and 60% of 
elements reported on average, respectively. 

4. Discussion 

Given the global importance of MBDs, it is essential to develop 
quality SDMs to aid mosquito and disease management. Most SDMs 
surveyed here demonstrated unacceptable or minimally acceptable 
practices, with aspirational or current best practices applied by 12% of 
studies. Compared to Araujo et al.’s (2019) assessment of SDMs covering 
all taxa, we found that mosquito SDMs applied lower quality response 
variable, predictor variables, and model evaluation but better model 
building considerations (Supplementary material 1: Table S4). We focus 
on detailing how mosquito SDMs can enhance their quality in the SDM 
aspects of decreased quality above and highlight how mosquito SDMs 
achieved higher levels of model building quality relative to Araújo et al. 
(2019). 

4.1. Response variable 

Mosquito SDMs indicated a lower quality of environmental extent 
consideration among the top 90% of SDMs compared to Araújo et al. 
(2019). We observed that 84% of mosquito SDMs were applied to spe
cific regions, potentially limiting the environmental extent and causing 
excess generalization. Studies failed to provide evidence of species’ 
environmental tolerance within these areas. Instead, studies calibrated 
SDMs with the best available mosquito occurrences for the study region 
(e.g. Dickens et al., 2018). A select few SDMs addressed environmental 
extent by removing records in unreasonable environmental conditions 
(e.g. Gomes et al., 2016) or provided a single line of evidence indicating 
occurrences occur across all major environments within study area (e.g. 
Fossog et al., 2015). Future studies should design sampling efforts to 
include all regions within the species’ environmental tolerances. How
ever, this is not necessarily feasible owing to accessibility (i.e. private 
property) and large geographic extents required. Alternatively, Gogol-
Prokurat (2011) demonstrated that expanding the environmental extent 
by considering more predictors to train SDMs of rare plant species 
improved habitat suitability predictions and field applications. Cali
brating SDMs to a greater environmental extent improves model fit 

Fig. 3. Best-practice standards achieved by 127 mosquito SDMs publications 
(1998-2020). Lines indicate 50% (red) and 90% (blue) quantiles scores for each 
issue. Coloured rings indicate the level of quality: gold, silver, bronze, and 
deficient, such that the intersection of the quantile line at the outer-most point 
of the ring indicates quality per issue. The area inside each respective polygon, 
defined by either quantile line, represents an overall measure of model quality. 
For definitions of standards, see Araújo et al. (2019). Issue codes are defined in 
Table 1. Raw standard qualities are available in Table 1. 

Fig. 4. Temporal trends in best-practice standards from Bayesian 
ordinal regression across all years. Temporal trends near zero repre
sent no change in standards over time. Solid vertical bars and shading 
indicate temporal trend (Bayesian coefficient) and 95% confidence 
intervals of each aspect, respectively. Standard specific temporal 
trends and 95% confidence intervals of each issue are shown by points 
and error bars, respectively. Raw proportions over time are shown in 
Supplementary material 1: Figs. S3-6. The four categories considered 
herein are identified by different colours, within 15 identified problem 
areas occur (see Table 1 for the former and Araújo et al. (2019) for the 
latter).   
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Fig. 5. Assessment of mosquito SDM reproducibility, percent of papers that reported a reproducible element of SDM method with respect to the four aspects of SDM 
quality. See Feng et al. (2021) for details on reproducible methods of SDMs. 
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(Thuiller et al., 2004). Additional predictor variables should include a 
variety of environmental and biotic predictors relevant to the species, 
geographic extent, and objective (Broennimann and Guisan, 2008; Early 
and Fox, 2014). 

Failure to properly account for environmental extent inhibits SDM 
applicability for the intended use. Inhibited SDM applicability may 
cause truncation of response curves and misidentification of important 
predictors when explaining a distribution. As well as biasing pre
dictions/projections leading to unfounded conclusions and management 
implications, particularly when projecting into new geographic or 
temporal ranges (Synes and Osborne, 2011; Harisena et al., 2021). Many 
mosquito species are considered invasive and demonstrate rapid evo
lution (i.e. A. albopictus) (Egizi et al., 2015). Accordingly, considering 
the native or invaded distribution alone may not represent the entire 
niche (Medley, 2010). Specifically, temperature is a fundamental driver 
of MBD and mosquito life cycle, followed by precipitation or water 
availability (depending on species) (Wegbreit and Reisen, 2000; Shragai 
et al., 2017; Mordecai et al., 2019; Franklinos et al., 2019). Therefore, as 
a minimum, temperature thresholds must be satisfied within the envi
ronmental extent and followed by precipitation. When spatially and 
temporally explicit records are unavailable to demonstrate total envi
ronmental tolerance as described by physiological studies of a single 
predictor, the corresponding predictor should not be applied in model 
building and the effects discussed (Thuiller et al., 2004). 

Those wishing to investigate mosquito distributions are encouraged 
to consider multiple lines of evidence to infer environmental extent, 
such as historical and current distributions. For example, Metcalf et al. 
(2014) combined responses from spatial-temporal fossil data, ancient 
DNA, and palaeoclimatological reconstructions for the American bison, 
Bison bison, to determine the entire environmental extent. Mosquito 
response variables are available from literature and museum records as 
early as 1947 to account for the historical environmental extents of some 
species (Peach and Matthews, 2020). Alternatively, SDMs considered 
over large geographic areas, or more predictor variables may capture the 
environmental extent without including additional records. Neverthe
less, future studies must provide evidence of environmental tolerance 
from global, historical ranges, or physiological studies (Kearney et al., 
2009; Varela et al., 2009; Barbet-Massin et al., 2010). 

4.2. Predictor variables 

Overall performance of predictor variables applied to mosquitoes 
indicated the most significant deficiency compared to all taxa assess
ments (Araújo et al., 2019). Though the selection of predictor variables 
and uncertainty quality were consistent with that identified by Araújo 
et al. (2019), resolution demonstrated lower quality within both quan
tiles. Predictors’ spatial and temporal resolution must reflect that of the 
response variable to determine accurate species-environment relation
ships (Thuiller et al., 2004; Barbet-Massin et al., 2010). The spatial 
resolution was theoretically justified given response variable sampling 
design (e.g. Tran et al., 2013) or by a known or estimated spatial error in 
the response variable (e.g. Johnson et al., 2017). Though more often, 
predictor resolution depended on the resolutions available for selected 
predictors. For example, we observed a considerable reliance on 
pre-calculated bioclimatic variables at 1 km2 resolution without justi
fication (Supplementary material 1: Fig. S1). 

If possible, future applications should estimate an appropriate spatial 
resolution relative to the ecological, biogeographical knowledge, and 
study objective. The resolution at which a species interacts with any 
potential predictor is mainly unknown and limited by the spatial accu
racy of the response variable (Hirzel et al., 2001; de Knegt et al., 2010). 
Previous authors have suggested estimating the resolution through 
dispersal, home, or perceptual range, body size, or reproduction period 
(Tyre et al., 2001; Mech and Zollner, 2002; Jackson and Fahrig, 2015). 
On the other hand, one can statistically approximate the appropriate 
resolution with sensitivity analysis. Sensitivity analysis involves 

determining the resolution which observes a high correlation with the 
response variable, therefore approximating the resolution at which a 
species responses to the predictor (e.g. Lechner et al., 2012). Addition
ally, species interact with the environment at different levels, such that 
relationships identified at one resolution are not necessarily observable 
at others (Lechner et al., 2012). Therefore, species-environment re
lationships must be measured at the appropriate resolution per predic
tor, which requires the consideration of multi-resolution SDMs (Levin, 
1992). Previous work has highlighted multi-resolutions enhance un
derstanding of the species-environmental relationship and provided 
guidelines (Václavík et al., 2012). Researchers may consider 
multi-resolution SDMs to allow species-environment responses to be 
evaluated at an appropriate resolution if sufficient response variable 
accuracy exists. 

The consideration of lattice responses further complicated predictor 
resolution. Lattices are assumed to represent the characteristics of the 
environment across the geographic ranges they represent (Saveliev 
et al., 2007). Accordingly, lattices allow for powerful investigations of 
species distributions if in line with the modeling objective (Openshaw, 
1981). However, SDMs must be calibrated with predictors that reflect 
the size of the lattice. Otherwise, the interpreted values misrepresent the 
environmental conditions (Moudrý et al., 2019). Lattices with 
equal-sized grids are more reliable for interpretation than unequal sized 
grids (i.e. administrative regions) (Saveliev et al., 2007). Unequal or 
irregular lattices increase statistical bias where environmental correla
tions can vary from positive to negative depending on the aggregation 
scale, potentially rendering the results inapplicable (Cheng et al., 2021). 
Applying lattice response and predictor variables to mosquitoes requires 
caution and should be used if in line with the objective and predictors 
are aggregated to lattice size. One may integrate more accurate occur
rence sets to limit potential statistical bias. Pacifici et al. (2019) pro
vided a framework for incorporating misaligned occurrences sets at 
varying spatial accuracy. Many states have widely available mosquito 
occurrence records within the contiguous United States, but others are 
latticed to county centroids. Therefore, considering all available data, 
one can create separate SDMs for each response variable set accuracy 
with appropriate resolution predictors and ensemble appropriately. 

Predictor resolution should support the study objective. Many 
studies sought to aid fine scale targeted species management initiatives, 
therefore appropriately applied a 1 km2 resolution or finer resolution 
(Landau and van Leeuwen 2012; Attaway et al., 2014). However, 
considering coarser resolutions is appropriate to approximate the 
probability of occurrence across a large geographic extent (Kraemer 
et al., 2015) or across a lattice to explore a specific phenomenon or 
explore the administrative level probability of occurrence (Johnson 
et al., 2017; García-Carrasco et al., 2021). Projection of habitat suit
ability into the past or future is greatly limited by available resolution 
(Koch et al. 2016), therefore a coarse resolution may be applied and 
interpreted accordingly. Here, most studies focused on determining the 
fine-scale habitat suitability or probability of vector occurrence. 
Therefore, most studies required fine resolutions to satisfy the species’ 
biology and objectives. Though many authors did apply a 1 km2 reso
lution, this is not true of all SDM applications (Supplementary material 
1: Fig. S1). Therefore, future efforts require greater attention to pre
dictor resolution with justification for predictor resolution. 

Similarly, the temporal resolution must reflect the time of the 
response variable and objective. The reliance on pre-calculated biocli
matic variables limited the temporal resolution to 1970-2000 (Fick and 
Hijmans 2017), though many authors considered responses and objec
tives outside this period (e.g. Hesami et al., 2019). A mismatch between 
or within response, objective, and predictor temporal resolutions results 
in mis-specified environmental conditions and biased results (Fernan
dez et al., 2017). When the temporal resolution of the response variable 
is known, predictor temporal resolution should reflect it exactly (e.g. 
Arboleda et al., 2012) or with the next closest applicable temporal 
period of effect available (e.g. Alaniz et al., 2017). Future studies may 
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consider lagged temporal predictors when there is a lag effect between 
the predictor and response by the impact it triggers in the ecosystem, 
including carry-on effects exhibited by different mosquito species (Lebl 
et al., 2013; Roux et al., 2015; Giraud et al., 2022). Though lag pre
dictors have not been evaluated in mosquito SDMs. Evans et al. (2022) 
reviewed SDMs of euphausiids and indicated considering lag nutrient 
and chlorophyll levels, large-scale climate events (i.e. El Niño), wind, 
and up-welling improved a proportion of model accuracies. Future 
studies should calculate temporally correct predictors from raw values 
and test lag values when available. Notably, WorldClim provides raw 
historical monthly climatic data from 1960 to 2018, such that the cor
responding bioclimatic variables can be calculated for the appropriate 
time by open-source functions to better match responses and objectives 
(Fick and Hijmans 2017). 

4.3. Model building 

Mosquito SDMs demonstrated higher overall performance within 
model building than Araújo et al. (2019), though not consistently across 
issues. The higher quality observed can be attributed to the 90% quan
tile in model complexity and treatment of bias and noise in the response 
variable. Possible explanations for this include more recent publications 
and smaller sample size, allowing for improved model building con
siderations to be more prevalent. Regardless, mosquito SDMs provide 
modern examples of addressing and accounting for complexity and bias. 
Model complexity is related to the number of predictors applied and 
fine-tuning of hyper-parameters (Merow et al., 2014). The number of 
predictors used was considered by assessing collinearity and removing 
low-importance predictors through iterative selection (e.g. Johnson 
et al., 2017). This process allows inclusion only of predictors that exhibit 
a robust statistical relationship with the response variable (Dormann 
et al., 2013). However, considering all correlated factors allows for 
biased or erroneous estimates (i.e. inflated or obscured) to be identified 
(Aragón et al. 2010; Real et al., 2013). Iterative removal of lowest 
important predictor helps to piece out biased or erroneous estimates 
(Zeng et al., 2016). Likewise, mosquito SDMs fine-tuned hyper
parameters characteristics for each response variable by manual or 
automated comparisons within specialized R packages (Muscarella 
et al., 2014; Cobos et al., 2019) or stepwise Akaike information criteria. 
For example, the rising popularity of MaxEnt has coincided with the 
increased availability of software to automatically test a range of 
hyperparameters, such as included feature classes and regularization 
multiplier, to determine the best fit against resubstituted or random 
hold-out of training data. Addressing model complexity in these ways 
decreases the probability that a model will overfit, providing more 
valuable predictions and projections (Araújo and Pearson, 2005). 

We noted that mosquito SDMs were highly dependent on heteroge
neous secondary response variables from one or more repositories. 
These repositories often represented a combination of literature records, 
citizen science, and organized surveys (Kraemer et al., 2015). Reliance 
on such heterogeneous sources limits the quality of the response variable 
and introduces potential bias (Syfert et al., 2013). However, heteroge
neous sources can reduce sampling bias if sampling is diverse and 
widespread (Sardà-Palomera et al., 2012). The appropriate method to 
account for bias in the response variable will depend on the bias present 
but is often related to sampling, geographic, or environmental bias 
(Inman et al., 2021). Accordingly, mosquito SDMs demonstrated a wide 
range of methods to treat bias and noise, including Mahalanobis distance 
(e.g. Ducheyne et al., 2018), spatial thinning (e.g. Drake and Beier, 
2014), target group sampling (e.g. Wiebe et al., 2017), and bias layers (e. 
g. Sallam et al., 2016). Also, though not all publications addressed bias 
and noise, it was acknowledged and described by over half of the studied 
publications. Model complexity and treatment of bias can continue to 
improve by quantitative assessments from multiple lines of independent 
validation to indicate reliability methods (Araújo et al., 2019). 

4.4. Model evaluation 

Model evaluation of mosquito SDMs reflected those described for all 
taxa by Araújo et al. (2019), except mosquito SDMs indicated a lower 
90% quantile of model outputs. Mosquito SDMs relied heavily on 
random hold-out evaluations over independent and re-substitution 
methods. Splitting the response variable into training and testing pro
vides an improved assessment of an SDM’s fit and predictive ability over 
re-substitution but limited assessment compared to independent data 
(Peterson et al., 2007; Bahn and McGill, 2013). For example, Wenger 
and Olden (2012) observed that SDMs of Brook trout, Salvelinus fonti
nalis, and Brown trout, Salmo trutta, had excellent performance when 
evaluated with random hold-out methods but poorly predicted inde
pendent data in new locations and climates. Independent data can come 
from an independent systematic survey in a different space or time from 
training data (Martínez-Meyer et al., 2004; Peterson et al., 2007). 
Mosquito SDMs applied independent evaluation from updated field 
surveys from public health or targeted efforts (e.g. Tran et al., 2013; 
Ibanez-Justicia and Cianci, 2015). 

Many workers describe the lack of independent data for evaluation. 
When an independent evaluation is available, it may be inflated owing 
to spatial autocorrelation and bias (Hijmans, 2012). Specifically, 
training and testing datasets may fall within close geographic range to 
one another, thus being non-independent and inflating evaluation 
(Peterson and Soberón, 2012). Instead, mosquito SDMs should focus on 
geographically independent datasets for an unbiased evaluation. Stan
dard practices for geographic structured evaluation data within mos
quito SDMs included division by political boundaries (e.g. Levine et al., 
2004), latitude, longitude, or quadrants (e.g. Arboleda et al., 2012). 
Unfortunately, these methods do not directly account for spatial auto
correlation or bias. Instead, one can divide training data into one or 
more geographically structured datasets to account for spatial autocor
relation. Capinha et al. (2014) estimated the global range of A. aegypti 
and created training and testing sets by accounting for spatial autocor
relation through alpha shapes. Other methods to account for spatial 
autocorrelation include removing spatial bias by pairwise distance 
sampling (Hijmans, 2012), automated spatial block cross-validation 
(Valavi et al., 2019), or spatial “leave one out” method (Le Rest et al., 
2014). The appropriate approach to create geographically-structured 
training and testing sets will depend on the study objective, extent, 
and response variable. 

4.5. Temporal trends 

Interest in Anopheles and Culex spp. remained relatively constant over 
time, while that of Aedes spp. increased. Given the rapid global spread 
and importance of select Aedes spp., paired with the introduction or 
resurgence of associated MBD, increased interest in Aedes spp. distri
bution is not unexpected (Lessler et al., 2016; Leta et al., 2018). Like
wise, while Anopheles and Culex spp. have a much lower degree of global 
spread, distribution was assessed within the proximity of endemic areas 
(Gangoso et al., 2020; Liu et al., 2020). As such, interest in Aedes spp. is 
expected to increase in future years. 

Despite mosquito SDM improvements in some issues compared to all 
of the taxa studied by Araújo et al. (2019), overall temporal patterns 
indicated predominantly divergent behavior across issues. The lack of 
consistent change suggests that most modern mosquito SDMs have not 
improved on previous models, despite simultaneous SDM research to 
improve applications over the years. Instead, publications applied the 
same techniques to new occurrence records or under different condi
tions. Further, since the development of SDM standards, SDM quality 
has not changed. This suggests not enough time has passed for the 
standards to be acknowledged and implemented within mosquito dis
tribution forecasting. The same may not be accurate for all taxonomic 
groups. Yet these findings must be interpreted with caution as we 
observed unequal SDM application across years, with no publications in 
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1999, 2000, and 2003, and only a single year of publications to repre
sent after standard quality. 

Response variable and predictor variables observed more consistent 
increases and decreases in temporal quality change, respectively. These 
observed patterns were also detailed by Araújo et al. (2019), but 
mosquito-only SDMs demonstrated more robust trends. Generally, 
response quality has increased owing to increased biodiversity efforts 
that allow for occurrence repositories with increased detail (Soberón 
and Peterson, 2004). Mosquito reporting and surveys are increasing 
globally to manage MBD through both standardized active and 
non-standardized passive surveys (Kampen et al., 2015; Kovach and 
Smith, 2018; Chen et al., 2020). Additionally, increased criticism and 
technology protocols exist to improve survey efforts (Baldacchino et al., 
2015; Parihar et al., 2020; Dormont et al., 2021). Conversely, predictors 
indicated increasingly haphazard selection limited to bioclimatic vari
ables with little to no justification for selecting predictors, resolution, or 
consideration of uncertainty. High resolution environmental data is 
increasingly available via remote sensing efforts but is rarely applied to 
SDMs (Pinto-Ledezma and Cavender-Bares, 2021). As environmental 
and other predictors become more accessible, more consideration of 
predictor variables is required for mosquito SDMs. Authors and re
viewers are encouraged to review best practices in SDMs to focus on 
enhancing their applicability to all SDM aspects and issues. 

Finally, it is essential to acknowledge that the applied standards 
reflect a relative consensus of expert advice and that scientific standards 
can be challenged and altered accordingly. Other standards for all SDMs 
applications (Sofaer et al., 2019), reporting (Feng et al., 2019; Zurell 
et al., 2020), and guides (Sillero et al., 2021) have emerged. As more 
research on SDMs and mosquito distributions is conducted, the strengths 
and weaknesses of SDM methods may change (Araújo et al., 2019). We 
acknowledge that accomplishing gold or silver standards may not be 
possible in all scenarios due to logistical challenges such as data limi
tations. The considered assessments here were limited by missing 
reproducible elements across considered literature (Fig. 5). We recom
mend that future studies follow reproducibility checklists (Feng et al., 
2019; Zurell et al., 2020). Further, the evaluation criteria proposed by 
Araújo et al. (2019) may be too stringent to meet modern SDM practices. 
Evaluation against different standards (i.e. Sofaer et al. 2019) may 
provide a different interpretation. As such, an SDM is not universally 
valid or invalid but must be evaluated on whether the model is valid for 
its designed purposes. The recommendations we outline here provide 
guidelines for mosquito SDM quality improvement. Variation and biases 
of standard quality interpretation between observers are natural. Here, 
we assessed SDM quality by a single individual, so uncertainty between 
assessors could not be quantified or examined. Future standard assess
ments should apply multiple assessors when possible. 
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Sardà-Palomera, F., Brotons, L., Villero, D., Sierdsema, H., Newson, S.E., Jiguet, F., 2012. 
Mapping from heterogeneous biodiversity monitoring data sources. Biodivers. 
Conserv. 21, 2927–2948. https://doi.org/10.1007/s10531-012-0347-6. 

Saveliev, A.A., Mukharamova, S.S., Zuur, A.F., 2007. Analysis and modelling of lattice 
data. In: Zuur-Alain, F., Ieno, E.N., Smith, G.M. (Eds.), Analysing Ecological Data, 
Statistics for Biology and Health. Springer, New York, NY, pp. 321–339. https://doi. 
org/10.1007/978-0-387-45972-1_18. 

Shragai, T., Tesla, B., Murdock, C., Harrington, L.C., 2017. Zika and chikungunya: 
mosquito-borne viruses in a changing world. Ann. N. Y. Acad. Sci. 1399, 61–77. 
https://doi.org/10.1111/nyas.13306. 

Sillero, N., Arenas-Castro, S., Enriquez-Urzelai, U., Vale, C.G., Sousa-Guedes, D., 
Martínez-Freiría, F., Real, R., Barbosa, A.M., 2021. Want to model a species niche? A 
step-by-step guideline on correlative ecological niche modelling. Ecol. Model. 456, 
109671 https://doi.org/10.1016/j.ecolmodel.2021.109671. 

Silva, L.D., de Azevedo, E.B., Reis, F.V., Elias, R.B., Silva, L., 2019. Limitations of species 
distribution models based on available climate change data: A case study in the 
Azorean forest. Forests 10, 575. https://doi.org/10.3390/f10070575. 

Smith, A.B., Santos, M.J., 2020. Testing the ability of species distribution models to infer 
variable importance. Ecography 43, 1801–1813. https://doi.org/10.1111/ 
ecog.05317. 

Soberón, J., Peterson, T., 2004. Biodiversity informatics: managing and applying primary 
biodiversity data. Philos. Trans. R. Soc. B-Biol. Sci. 359, 689–698. https://doi.org/ 
10.1098/rstb.2003.1439. 

Sofaer, H.R., Jarnevich, C.S., Pearse, I.S., Smyth, R.L., Auer, S., Cook, G.L., Edwards- 
Jr, T.C., Guala, G.F., Howard, T.G., Morisette, J.T., Hamilton, H., 2019. Development 
and delivery of species distribution models to inform decision-making. Bioscience 
69, 544–557. https://doi.org/10.1093/biosci/biz045. 

Syfert, M.M., Smith, M.J., Coomes, D.A., 2013. The effects of sampling bias and model 
complexity on the predictive performance of MaxEnt species distribution models. 
PLoS One 8, e55158. https://doi.org/10.1371/journal.pone.0055158. 

Synes, N.W., Osborne, P.E., 2011. Choice of predictor variables as a source of uncertainty 
in continental-scale species distribution modelling under climate change. Glob. Eco. 
Biogeogr. 20, 904–914. https://doi.org/10.1111/j.1466-8238.2010.00635.x. 

Thuiller, W., Brotons, L., Araújo, M.B., Lavorel, S., 2004. Effects of restricting 
environmental range of data to project current and future species distributions. 
Ecography 27, 165–172. https://doi.org/10.1111/j.0906-7590.2004.03673.x. 

Tran, A., Ippoliti, C., Balenghien, T., Conte, A., Gely, M., Calistri, P., Goffredo, M., 
Baldet, T., Chevalier, V., 2013. A geographical information system-based 
multicriteria evaluation to map areas at risk for Rift Valley fever vector-borne 
transmission in Italy. Transbound. Emerg. Dis. 60, 14–23. https://doi.org/10.1111/ 
tbed.12156. 

Tyre, A.J., Possingham, H.P., Lindenmayer, D.B., 2001. Inferring process from pattern: 
Can territory occupancy provide information about life history parameters? Ecol. 
Appl. 11, 1722–1737. https://doi.org/10.1890/1051-0761(2001)011[1722:IPFPCT] 
2.0.CO.2. 
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